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Geormetric Aspects of the Linear Complementarity Problem

by Richard E. Stone

ABSTRACT

A large part of the study of the Linear Complementarity Problem (LCP)
has been concerned with matrix classes. A classic result of Samelson, Thrall,
and Wesler is that the real square matrices with positive principal minors
(P-matrices) are exactly those matrices M for which the LCP (¢, M) has a

unique solution for all real vectors ¢g. Taking this geometrical characteriza-

tion of the P-matrices and weakening, in an appropriate manner, some of the -

conditions, we obtain and study other useful and broad matrix classes thus

enhancing our understanding of the LCP.

In Chapter 2, we consider a generalization of the P-matrices by defining
the class U as all real square matrices M where, if for all vectors z within
some open ball around the vector ¢ the LCP (z, M) has a solution, then
(g, M) has a unique solution. We develop a characterization of U along with

more specialized conditions on a matrix for sufficiency or necessity of being

‘in U.

Chapter 3 is concerned with the introduction and characterization of the
class INS. The class INS is a generalization of U gotten by requiring that the
appropriate LCP’s (¢, M) have exactly k solutions, for some positive integer
k depending only on M . Hence, U is exactly those matrices belonging to
INS with k equal to one. ' -




Chapter 4 continues the study of the matrices in INS. The range of
values for k, the set of ¢ where (g, M) does not have k solutions, and the
mﬁltiple partitioning structure of the complementary cones associated with

the problem are central topics discussed.

Chapter 5 discusses these new classes in light of known LCP theory, and

reviews its bettei‘ known matrix classes.

Chapter 6 considers some problems which remain open.
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CHAPTER 1.
BACKGROUND TO THE LINEAR COMPLEMENTARITY PROBLEM

1.1 Introduction

The central topic with which this work is concerned is the linear com-
plementarity problem (LCP). The LCP is a nonlinear system of inequalities
where we are given as data an n X n real matrix M, a real n-vector q, and

are asked to find a real n-vector z such that

- 220, (1.1)
Mz+q20, (1.2)
2T (Mz+44q)=0. (1.3)

Although we shall not do so here, one can consider the more general com-
plementarity problem: given a closed convex cone K C R", with positive
polar cone K* = {y € ®* : yTz > 0, forallz € K'}, and a function
F:K - %", find 2 € R" such that

K €K, ‘ (1.4)
F(s)eK®, (1.5)
sTF(z) = 0. (1.6)

1
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These problems may be thought of as the natural formulations to use in
situations where an equilibrium point is being sought. They arise in quite a
‘number of fields including engineering, economics, optimization, game theory
and control theory. For more on these applications see, for example, Lemke
and Howson (1964), Cottle and Dantzig (1968), Cohen (1975), Koehler (1979),
and Cottle, Giannessi and Lions (1980).

As the previous references would suggest, the LCP has been extensively
studied. Most of this research has emphasized the algebraic nature of the

~ problem. In the present work we study the LCP from a geometric view-
point. Other authors have also taken this direction, see Saigal (1970b, 1972a,

. 1972b), Murty (1972), Eaves (1979), Kelly and Watson (1979), Garcia and
Gould (1980), Howe (1980), Cottle, ‘von Randow, and Stone (1981), and
Doverspike and Lemke (1981). This work studies the characterization and
general properties of matrices M for which (¢, M) has the same number of

solutions “globally,” and, as a special case, has a unique solution “globally.”

(Here “globally” is used to mean “for all ¢ € R" for which (g, M) has a

solution, except possibly for a set of measure zero.” This will be explained
in more detail later.) Other works often are concerned with exhibiting algo-
rithms that “process” the i.CP for a specified matrix class, and then, péssibly,
using the algorithm to show various properties of that class. In this work we
are concerned with existence proofs and properties of matrix classes rather
than with a.lgorithms'. The questions studied do not seem to lend themselves

to algorithmic techniques.

In Chapter 2 we will study LCP’s which have either no solutions or
unique solutions at almost every pbint. We will derive necessary and sufficient
conditions for a matrix M to have the property that if for some gop € R"
and some ¢ > 0 the LCP (1.1)-(1.3) has a solution for all ¢ € " within




a distance of € from qg, then the LCP has precisely one solution for gp.
Further results on matrices where the related LCP has this “global” unique-
ness property will be derived. A few papers show that some known matrix
classes are of this type. We will examine these papers more closely in Chap-

ter 5. In another direction, the question of local uniqueness in an LCP was

studied by Mangasarian (1980). That paper exhibits necessary and sufficient

conditions for a solution, 2z, to a given LCP to be within an 6pen ball in
R™ that contains no other solutions to the LCP. Aside from keeping an al-
gebraic outlook, these results are in a different vein from the questions we are

presently considering and do not appear to be helpful to the current study.

In Chapters 3 and 4 we relax the condition of global uniqueness. In
essence we replace the italicized word “one” in the previous paragraph with
k, where k is some fixed positive integer. We will derive characterizations
for these matrices and related results concerning the geometric structure of
LCP’s with this property. There are a few papers that deal with the property
of an almost globally invariant number of solutions, see Murty (1972), Saigal
(1972b), Kojima and Saigal (1979), and Mohan (1978, 1980). These papers
deal with special matrix classes for which a specialized result is sought.
They do not attack the problem in full generality, and some do not look
for underlying geometric structure. Saigal (1972b) contains some errors —
inherited by Mohan (1978) — which will be discussed in Chapter 5. Thcse
papers, along with some others, e.g., Saigal (1972a), discuss the property
of an almost globally invariant parity in the number of solutions. That
is, the number of solutions to (1.1)}~(1.3) for a particular matrix, M, will
be either odd or even, not both, for almost all g. This is a much weaker
property than that of an invariant number of solutions, and will not be given

much consideration here. The interested reader should see Saigal (1972a)




for a complete geometric characterization of LCP's with this constant parity

property.

Chapters 5 and 6 discuss other matrix classes, related LCP theory and
some open questions. It is typical for dissertations in this field to begin with
one or two chapters reviewing the known classes of matrices and the history
of the area. In this work it seemed better to leave this to a later chapter. It

is Chapter 5 that contains such a summary.

The next section of this chapter will go over preliminary results that are
needed throughout thigs work. The last section of this chapter is a glossary of
the notation that is used. It is suggested that the reader first look over this
last section to see the basic style of notation used. It should be pointed out

that throughout this work the word interior is used to mean relative interior.

1.2 Background Material

As was stated before, the Linear Complementarity Problem is: Given

M e R*X"™ and q € R™, find 2 € R" such that

220, (1.1)
Mz+4q¢20, (1.2)
2T(Mz+q)=0. (1.3)

The LCP with M and q as the data will be denoted as: (¢, M). For our
purposes it will be useful to deﬁpe w = Mz+q. Thus we can express (g, M)
as the problem, given M € R**" and ¢ € R", of finding z,w € R™ such
that




Iw— Mz=q, (1.7)
zw2>0, (1.8)
2w =0, (1.9)

where I is the n X n identity matrix. This formulation of the problem mak;as
it clear that we are just trying to find a nonnegative lincar combination of -
the column vectors of I and —M that equals ¢, where we may not “use”

both I.; and —M,; for any 1 € 7i. This idea suggests making

DeFINITION 1.1 For M € R"*™ and a € (%) define Cy(a) € R*X™

as
I.,' ,ififa

C g = 1.10
m(a) {-—M..- fica ( ')

where the subscript M will be dropped when it is clear to which M we are
referring. The Cjps(a). are called the complementary matrices associated with

M . There are 2™ such matrices, not necessary distinct. -

Associated with each complementary matrix is the finite convex cone
posCp(a) ={yER":y =Cpm(a)z, z2>0}.

The cone pos Cps(a) is called a complementary cone of the matrix M, and
the subscript M is dropped when it is clear which M is meant. There are 2"
such cones, not necessarily geometrically distinct. Notice that two distinct
complementary matrices may be associated with complementary cones that

are geometrically identical. For example, the matrix

M= [ _‘: g ] (1.11)

will have pos C({1}) geometrically equal to pos C(Z), even though C({1})

and C(2) are distinet matrices.

et e n g g — . crd—




If we have B8 € (1) such that
dim{pos Cps(a).p] = r

then pos Cas(a).g is referred to as a r-dimensional facet of the complementary
cone pos Cps(a). Furthermore, if [8] = n — 1 then pos Cx(a).p is referred

to as a face of the complémenta.ry cone pos Cp(a).

Let sol(g, M) be the set of ordered pairs, (w, z), of solutions to the LCP
(¢, M). If (w, z) € s0l(g, M) then, letting z=w-+ 2> 0 and « =‘ supp z,
we have C(a)z = q. Conversely, if we find for some a € (%) that there
is an z > 0 with Cla)z = ¢ then with z, = z,, 24 = 0, wea = 0
and wg = z4, We have (w,2) € sol(g, M ) In this way, each solution,
(w, 2) € sol(q, M), will be associated with at least one complementary cone
of M. Also, in this way, each point in a complementary cone of M will be »

associated with at least one solution. We can now state-

DerFINITION 1.2 For M € R™*X™ let

K(M) = U pos Cps(a).
a€(T)

We then see from the previous discussion that

K(M) = {q€R":s0l{q, M)5#£0}.

In Figure 1.1 we show the complementary cones for the matrix in (1.11).
In Figures 1.2 and 1.3 we show the complementary cones, respectively, for

.

.

(1.12) ‘ (1.13)




In these diagrams the column vector I; is indicated by an ¢+ and the column

vector —M,; is indicated by an 1’.

Each solution of (g, M) must be associated with at least one complemen-
tary cone containing ¢, and each complementary cone containing ¢ must be
associated with at least one solution of (g, M). However, the exact relation-
ship between complementary cones and solutions is often not simple. For
example, consider the problem with M given by (1.12) and ¢ = (1,1)T.
Then g is contained in three complementary cones pos C(#), pos C({1}) and
pos C(2). However, |sol(g, M)| = 2; where the solution (w,z) = (1,1,0,0)
is associated with pos C(@), and the solution (w, z) = (0,0, 1,0) is associated
with the other two cones. With M given by (1.13) and ¢ = (0, —1)T, we
find ¢ is contained in the complementary cones: pos'C’(i) associated. with
the solution (w,z) = (0,0,1,0); posC({2}) associated with the solution
(w,2) =(1,0,0,1); and pos C({1}) associated with the infinitely many solu-
tions (w,z) = (0,8,1 + 8,0), where 8 ranges over all nonnegative reals. In
the first case we have have more complementary cones containing q than
solutions to (g, M); in the second case there are more solutions to (g, M)

than there are complementary cones containing q.
To help in our discussion, we make the

DerFINITION 1.3 For M € R™"X™, we say the complementary cone
pos Cap(a) is full or nondegenerate if and only if det Car(a) 7% 0; otherwise
we say the cone is degenerate. Notice det Cpr(a) = (—1)I! det Mo . More
over a complementary cone is full if and only if it has positive n-dimensional
volume, and a complementary cone is full if and only if it is not contained in
an (n—1)-dimensional hyperplane. In addition to the above, we say M itself

is nondegenerate if for all a € (71) the cone pos Cps(a) is nondegenerate, i.e.,

N

-—




all the principal minors of M are nonzero.

DEFINITION 1.4 For M € R"**™, we say the degenerate complementary
cone pos Cps(a) is strongly degenerate if and only if there exists a z € R"
such that 02z > 0 and Cp(a)z =0, i.e., if and only if for ¢ = 0, which’
is in every complementary cone, we find (g, M) has a non-trivial solution
(w, 2) % 0 associated with pos Cas(a). Otherwise we say the cone is weakly -
degenerate. We say M is weakly degenerate if not all of its complementary
cones are nondegenerate, but none of the complementary cones are strongly
 degenerate. That is, M is weakly degenerate if it has a zero principal minor

and sol(0, M) = {(0,0)}.

DerFiNITION 1.5 For M € R"™ ™, we say (w,z) € sol(q, M) is a
nondegenerate solution if and only if w + z > 0. Otherwise the solution is
said to be degenerate. We say a point g € R™ is nondegenerate with respect
to M if all solutions to (g, M) are nondegenerate. Otherwise ¢ is said to

be degenerate.

Consider the matrix M as given by (1.11). M is a degenerate matrix -
as all of its complementary cones are strongly degenerate, except for the
nondegenerate complementary cone pos C(#). The matrix M as given by
(1.13) is degenerate as it contains the weakly degenerate complementary
cone posC({1}). Finally, le¢ M be the nondegenerate matrix given by
(1.12). If ¢ = (1,1)T, then ¢ is degenerate as (w,2) = (0,0,1,0) is a
degenerate solution to (g, M). If ¢ = (3,1)7, then ¢ is nondegenerate
as (w!,z!) = (3,1,0,0) and (w?, 2%) = (0,0,2,1) are the only solutions
to (g9, M) and both are nondegenerate. The reader should refer to Figures
1.1, 1.2, and 1.3, respectively, when considering the matrices given by (1.11),
(1.12), and (1.13).




Now, suppose ¢ is contained in the interior of the degenerate complemen-
tary cone pos Cpr(a). Thus there is some 0 < z € R™ such that C(a)z =g¢.
As this is a degenerate cone, there exists 0%y € R™ such that C(a)y = 0.
Thus we may select some real number A0 such that 0 & z+ \y > 0.
Hence, if we let 2, = (z + 0y)a, 2a = 0, wy = 0, and ws = (z + 0y)s,
then (w, z) is a solution to (g, M) for all @ such that {§] < {\|. Hence, if M
is degenerate then we have some ¢ € R with [sol(g, M)| = oo. Notice also
that (g, M) has a degenerate solution when we let § = X\. In fact, this holds
even if we have ¢ on the boundary of the degenerate complementary cone.
However, now we might have A = 0, and so we might not have infinitely

many solutions, but we will still have a degenerate solution.

Suppose ¢ is contained in the nondegenerate complementary cone

posCp(a). Thus there is some 0 < z € R™ with C(a)z = q. But now

C(a)~! exists and z = C(a)~1q. So with 2z, = Z,, 24 = 0, wa = 0,
and ws = za4, we have ([w,,ws), [2a, 2a]) is the only solution to (g, M)
associated with the complementary cone pos Cas(a). In fact, if the solution
(w, z) is nondegenerate, i.e., if z, > 0 and ws > 0, then this solution is
associated with no other complementary cone. For if it were associated with
posCm(B), B € (7), then we would need z3 =0 and wg =0 whiéh, with

the previous, would imply -a = 8. We now have

R N




ProposiTION 1.6 Given M € R*X";

i (&M ) has finitely many solutions for all ¢ € R" if and only if M is
nondegenerate;

(if) if ¢ € R™ is in the interior of a degenerate complementary cone then
(¢, M) has infinitely many solutions;

(iii) each degenerate complementary cone is associated with exactly one
solution of (g, M) for each g € R™ that it contains (and, of course, it
is associated with no solutions for the g it doesn’t contain);

(iv) if ¢ € R™ is nondegenerate then there is a bijective correspondence
between solutions of (¢, M) and complementary cones containing ¢.

O

The concept of complementary cones is first seen in Samelson, Thrall
and Wesler (1958}, and was later given a comprehensive treatment by Murty
(1972). Proposition 1.6 is an expansion of theorems proved in Murty (1972).
Before moving on to discqss other areas of LCP background material, it is

important to bring up the following

DeriniTiON 1.7 For M € R"X"™, we say the two complementary cones
posC(a) and posC(B), with a,8 € (®), are adjacent if and only if
Ja & B] = 1. That is, two distinct complementary cones are adjacent if
they share a common face. If a4 8 = {i}, then that common face is

pos C(a).s = pos C(B).;.

DeFiNITION 1.8 For M € R"X™, we say the common face
pos Cp(a).; between the complementary cones pos Cas(a) and pos Car(B),
where a & 8 = {1}, is properif and only if (det Cp(a))(det Ci(B)) < 0.

As det Cpra) = (—1)|°‘| det M, , we have

10




pos Cas(a).; is proper if and only if (det My, )(det Mgg) > 0.

Geometrically, pos Cas(a).s is proper if and only if it is (n — 1)-dimensional

and the vectors I; and —M.; lie on strictly opposite sides of span Cps(c).;.

DeFiNiTION 1.9 For M € R™X™, we say the common face
pos Crr(a).; between the complementary cones pos Ca(a) and pos Cp(B),.
where a a8 = {1}, is reflecting if and only if (det Car(a))(det Crs(B)) > 0.

Similar to the above we have
pos Cn(a).; is reflecting if and only if (det My, )(det Mgg) < 0.

Geometrically, pos Cps(a).; is reflecting if and only if it is (n—1)-dimensional

and the vectors I; and —M.; lie on the same side of spanCps(a);.

DeEFiNITION 1.10 For M € ®R"X"™  we say the common face
pos Cap(a).; between the complementary cones pos Car{a) and pos Car(B),
where aaf = {i}, is degenerate if and only if (det Cps(a))(det Cps(B)) = 0.

As above, it can be shown that pos Cp(a).; is degenerate if and only if
(det Mo, )(det Mgg) = 0, if and only if pos Cas(a).; is a face of a degenerate

complementary cone.

For examples of the preceding definitions see to Figure 1.3, which shows
K(M) for the matrix (1.13). Here pos C(®)., is proper, pos C(2).; is reflect-
ing, and posC(2).; and posC(@).; are degenerate.

We now move on to consider the algebraic concept of principal transforms
of the matrix M. For a more detailed discussion see Tucker (1960, 1963),
Cottle and Dantzig (1968), and also Cottle (1974). Suppose we are given a

matrix M € R™%" which is not necessarily square and can be permuted to

11




look like

M.p lM“

€ JgmXn,

Moreover, suppose a € (M), f € (%), |a| = |B|, and det Mg 7# 0. We then

say the matrix

M3 ‘ ~M5 Moy

Mg M4 l Mgz — Msg M7} M,z

(1.14)
is a pivotal transform of M. We also say M is gotten from M by block
pivoting on Mag. If a = B, we then say M is a principal transform of -
M . Notice from (1.14) that if a C v € () then the principal transform of
M., resulting from a block pivot on Mgy is just (M).,,. In other words,
the principal transform of a submatrix will be the submatrix of a principal
transform. (The converse is not necessarily true.) The following two theorems
are straightforward algebraic consequences of the definition of M . They can

be found, for example, in Cottle (1974) and Parsons (1970).

THEOREM 1.11 Given M € R™*"™ with M € R™*" being the trans-
form of M obtained by block pivoting on M,g, then for all z € R™ and
¥y € R™ we have

Map l Maﬁ zs | Ya
12




if and only if

'A_lap l Hﬁ : Y zp

-Map ! Méﬂ Z , Ya

O

TueoreEM 1.12 (Tucker (1960)) Given M € R™**™ and o € (B). If
M € R"X" is the principal transform of M obtained by block pivoting on
Mgq , then for all 8 € (%)

detMps = — Mo

a

We will now obtain a few facts concerning principal transforms and their

relation to the LCP.

THEOREM 1.13 Given M € R™"X"™ and ¢ € R™, consider the matrix
[ M| qg] € RX(r+1) and let [ M | ] € R*X("+1) be its principal
transform obtained by blocking pivoting on My, for some a € (%). Then

[sol(g, M)| = [sol(g, M)|.

Proof. From Theorem 1.11 we have for any w,z € R™ that

1
Maa Maa Qa o Wa

2a = (1.15)
Maa Maa qa 1 wa

13




if and only if

—_— w
Maa I MO& l qa i Za
Z2& = (1.16)
Mow | Fas | 1 wa

ﬁence, if (Wa,wal,[2as2a]) € sol(q, M) then ([za, wa], (Wa, 2a]) € sol(q, M),

~ and vice versa. This gives us a bijective correspondence between sotutions to

. (g, M) and solutions to (§, M). Thus, the number of solutions must be the

same for the two LCP’s.
O

THEOREM 1.14 Given M € R**X", ¢ € R" and a € (7@), let
[ M| 3] e ®>*(+1) pe the principal transform of [ M | ¢ ] € RoXn
obtained by block pivoting on My,. Then ¢ € int K(M) if and only if -
7 € int K(M) .

Proof. For any z,w,z € R", Theorem 1.11 implies that

- 2 .
Maa Ma& lla Iaa L 0 Za, wa
1 =
Mia Msa qa 0 ] Taa Zo wa
-3 z&

(1.17)

if and only if

14




[ |
: 1 =
M&a M&& Ga 0 Taa Ta Wa
b z& p
_ (1.18) -
- Notice that, as the columns of M ;‘al are linearly independent, the columns
of
—M71 0
: (1.19)
0 laa

span R™. Suppose ¢ € K(M). We then have an ¢ > 0 such that z € B(q, ¢€)
implies sol(g+z, M)7#®. Let T = (—M 7} 2,,24)T € ®". Thus, by (1.17)
and (1.18) we see that sol(qg+z, M) P implies sol(§+%, M) 7 0. As (1.19)
spans R™, the set of Z corresponding to all z € B(g, ¢) contains an open ball

around §. Thus 7 € int K(M) . This proves one direction of the theorem.

The other direction is proved by the same argument. -

Tueorem 115 Given M € R**", ¢ € R* and a € (7), let
[ M ]3] e R"*("+1) be the principal transform of [ M | g | € R X(»+1)
obtained by block pivoting on M,,. Then ¢ € int pos Cp(B) if and only if
g € int pos Cz(a & B).

Proof. Suppose ¢ € int pos Cp(B8). Then there is an € > 0 such that
z € B(g,¢) implies ¢ + z € posCp(B), the latter thing implies there is
a (w,z) € sol(g + z,M) such that wg = 0 and z5 = 0. As before,
let 2 =(—M_!2,,24)T € R". By (1.17) and (1.18) we see that (@,2) =
([2a, wa), [wa, 24]) € s0l(g + %, M). Hence, with vy = a4 8, we have Wy=0

15




and Z5 = 0. This means § 4+ Z € posCy{7). Thus for the set of Z
corresponding to all z € B(g, €), which as before will contain an open ball
around g, we have § + Z € pos Cyz{a & B). Hence, 7 € int pos C(a & B).

The other direction of the theorem is proved by the same argument.

The preceding theorems show that, from the standpoint of combinatorial
topology, the structure of K(M) is identical to the structure of K(M). The
positive orthant in K(M)} i; identified with pos C(a) in K(M). Pivoting on

Mg, is, in essence, “swszping” the vectors I, with the vectors —M.,.

As our last topic, v+ turn to look at some classes of matrices that we
will need. We will Le discussing many more matrix classes in Chapter 5, but

for now we will mention only the classes P, Py, Q, Qqg, and Ey.

We say a matrix M € R"*" is in P (Pg) if and only if all its principal
minors are positive (nonnegative). It is clear that membership in P or Py
is an snherited property, i.e., if a matrix is in P (Pg) then all its principal
submatrices are in P (Pg). We also see, from Theorem 1.12, that if a matrix
is in P (Pg) then all its principal transforms are in P (Pg). (This was
first proved in Tucker (1963).) The main theorem concerning the geometric
structure of P-matrices comes from Samelson, Thrall and Wesler (1958) and

states
THEOREM 1.16 For M € R"X™, M € P if and only if [sol(g, M)| =1

for all ¢ € R™.
0

Another pair of matrix classes that are defined by the LCP are Q and
Qo . A matrix M € R"X"™ is said to be in Q if and only if sol(q, M) @ for
all g € R", ie.,, K(M) = R". It is clear that P C Q. However, the zero
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matrix in any dimension is in Pg but not in Q. Also, the matrix

1] a0

2 1

is not in Py, so not in P, but it is in Q, as can be seen in Figure 1.4.

The definition of Qg requires the concept of being “feasible” with respect

to a LCP. We say z € R" is feasible with respect to (g, M) if and only if 2

éatisﬁes

220, (1.1)
Mz+4+q2>0. o (1.2)

We now can define M € R™*™ to be in Qg if and only if for all ¢ € R™, for
which there is a 2 € ® which is feasible for (g, M), we have sol(q, M) #0.
Clearly @ C Qo . Notice that the negative of the identity matrix in any

dimension is not in Py, but is in Qg as then (¢, —I) has a feasible z if and.

only if ¢ > 0, in which case (g,0) € sol(g, M). Also the matrix

I

is in Py but not in Qq, for when ¢ = (—1,0)7 we find sol(q, M)7#9
although z = (0,1)7 is feasible. From Eaves (1971), we have the following

geometric result pertaining to Qg-matrices.

THEOREM 1.17 Given M € R™"%X™, M € Qo if and only if K(M) is a

convex set in R™. 0

Before leaving this section, we mention the matrix class Eq. A matrix

M € R*X™ is said to be semi-monotone, denoted M € Eg, if and only if

17




for all z € R", where 07z > 0, there is an index k € 7@ for which zx > 0
and (Mz)x > 0. (This class was introduced in Eaves (1969).) Consider the

o

(1.22) (i.23)

matrices

Notice that the matrix (1.22) is in Eg but not in Pp. It isn’t in Qg since
z = (1,0)T is feasible for g = (1, —1)7, yet there is no solution to the LCP
with this ¢ and matrix (1.22). Also, matrix (1.23) is in Q, as can be seen in

Figure 1.5, but is not in Eg. It is fairly obvious that
M>0 = MeE,. . (1.24)

It is also fairly obvious that being in Eq is an inherited property, i.e., if a
matrix is in Eg then so are all its principal submatrices. For if the vector
z € R" with 074z, > 0 is such that (Mue Zo)x < 0 for all k € @ where
zx > 0, then letting z4 = 0 we have 0%z > 0 with (Mz), < 0 for all
k € () where z; > 0. A is less obvious fact is the following (see Fiedler
and Ptdk (1966), Lemke (1970) and Eaves (1971)).

THEOREM 1.18 Py C Ep .

1.3 Notation

For easy reference, this section lists the notation that will be used in this

work and specifically the notation which is not standard.
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a, B, v etc.

3

(7)

=23

")

mmx'n

Mag

. Explanation

The set {1,2,3,...,n}.

Index sets. Example: the ordered k-tuple a =
(a1y..-yap) with 1 < a3 <+ < axp <n.

The collection of all index sets formed from 7 (in-

cluding the empty set, @).

The index set “complementary” to a (relative to
%). & is obtained from (1,2,...,n) by deleting

the components in a.

& for a = {1}.

The class of all real m X n matrices.
The class of all positive integers.

The submatrix of M with rows indexed by a and
columns indexed by 8. If a = 8 we say then call
My a principal submatriz of M . The determinant
of a principal submatrix of M is called a principal

minor of M. By convention det Mgy = 1.
(Map)™!.

The t** row of M.

The j** column of M.

The rows of M indexed by .a.

The columns of M indexed by 8.
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Za

Cumla) or C(a)

spanC

aff X -

dim X

posC

K(M)

The entries of the vector z indexed by a.

A complementary matriz relative to M and the

index set a. If C = C(a), then

—M.; if j€a
c, = ? ,
I, ifj¢a

The subscript M is normally dropped when it is

clear from the context.

The column space of the matrix C.

The affine hull of the set X . This is the set
{z+06y—z):z,y€ X, and 0 € R}.

The dimension of the affine hull of the set X . This
is the minimum number of columns needed in a
matrix C so that, given some ¢ € X, we have

af X = {g+2z:z€spanC}.

The set {Cz : z > 0} where C is a matrix

(not necessarily square). If C is a complemen-
tary matrix relative to M and some a € (@),
then pos C is called a complementary cone. A com-
plementary cone is said to be full or nondegenerate

if det C #£0. Otherwise, it is called degenerate.

The set

U pos Cm(ar).
ag(R)
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K(M)

B(Q’ €)

intX

- 0X

B

Po

Qo

X1

(g9, M)

The set
U pos CM(C!).g

a€(®)

SER
The open ball centered at ¢ with radius ¢. This is
the set {zER:|lz—gq|| < €}.

The relative interior of the set X with respect to
aff X . This is the set of all ¢ € X such that there
is some € > 0 such that af X N B(q,¢) C X .

" The relative boundary of the set X with respect to

aff X. Thus 8X = X \int X .

The closure of the set X . This is the set of all

z € R™ such that for all ¢ > 0 thereisa ¢ € X
where ¢ € B(z,¢).

Up{ M ER*X" :det Maq > 0, for all a € (B) }.
Un{ M € R*X" : det Moo > 0, for all a € (W) }.
LJ,,{ME RX" K(M) =R}
Un{M e R X" : K(M) =pos[ I | —M | }.

Up{MER>":0#£42z > 0=
Ik zie > 0&(Ma:)k 20}

Matrices in this class are said to be semi-monotone.
The cardinality of the set X .
The LCP given by (1.1), (1.2) and (1.3).
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sol(g, M) . The set of all solutions of the LCP (q, M).

-] The symmetric difference of a and . This is the
set (a\B)U(B\ a).

suppz The support of the vector z. This is the set
{7:2;70}.

One last point before ending this list: we say a set X is star-shaped at

q if and only if for every z € X we have
{Mq+(1—Nz:0<A<1}CX.

This says that the line segment between ¢ and z is contained in X .
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CHAPTER 2.
THE CLASS OF U-MATRICES

2.1 Preliminary Definitions and Results

In Chapter 1 we exhibited several matrix classes that are related to
the LCP. It is often the case that one useful class of matrices leads to
the consideration of other interesting matrix classes, gotten by weakening or
strengthening the conditions that define the original class. For example, the .
class P suggests considering the more general class Py. The class P, viewed
as the class of all matrices M for which (g, M) has a unique solution for all
q, suggests defining the class Q by dropping the uniqueness requirement and
just requiring that for each g a solution to (g, M) must exist. The class Q,
in turn, gives rise to the class Qg when we relax the definition to require only

that (g, M) have a solution whenever (1.1) and (1.2) alone are satisfiable.

We presently wish to understand the basic geometric structure which
gives rise to unique solutions to (g, M). With this in mind, we consider the

following class of matrices
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U {M e R : sol(q, M)| = 1, for all g € K(M) }.

This matrix class is obtained from P by relaxing the requirement that (g, M)
have a solution for all g, as Q was obtained by dropping the uniqueness
requirement. However, as we will see later, this “new” matrix class consists of
nothing but P. While this is an insightful result by itself, a subtler weakening '
of the definition of P-matrices is needed to get an appropriate matrix class
for our analysis. We find that the appropriate class to study is embodie'd in

the following definition.

DEeriNITION 2.1. A matrix A will be said to be a U-matrix, A€ U, if

and only if

A€ |J{M e RX":]sol(g, M)| = 1, for all g € int K(M) }.
n .

The goal of the next section will be to develop a characterization for the
class U. Before embarking on this task, we give two examples which verify
that U consists of more than just P; we also discuss some needed definitions

and results.

ExaMmpPLE 2.2 Let

In this case,

K(M) = {q€R?: 91+ g2 >0}

as shown in Figure 2.1. Note here that (g, M) has a unique solution for all

g satisfying q; + g2 > 0 including those of the form

) 0 .
] Gq>0 and 2>0

q2




7

for which the solution to (g, M) is degenerate.
ExaMPLE 2.3 Let
0 1
M= ] .
1 0
In this case,

K(M) =%2 uR2

as shown in Figure 2.2. Here the problem has a unique solution for all ¢

satisfying ¢ > 0 or ¢ < 0.

Notice that K(M) is convex in Example 2.2 and nonconvex in
Example 2.3. In both cases, |sol(g, M)] = oo for all ¢ € dK(M).

Perhaps the most important fact underlying the study of uniqueneass is
expressed by

LEMMA 2.4 If M € R**", the following are equivalent:
(i) M € Eq (that is, M is semi-monotone);

(i) (g, M) has a unique solution for all ¢ > 0;
(ili) for all @ € (%), the system

Maa’-’a < oy zq Z 0

has no solution.

The equivalence of (i) and (ii) was shown by Eaves (1971). The equiv-
alence of (i) and (iii) was shown by Lemke (1970).

Since int R C int K(M) for any M € R"*", it follows immediately
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from the definitions that
UC Eo. - (2.1)

' However, the inclusion is proper as shown by

1 2
[ ]EEo
2 1

for which K(M) = R2. In this instance M € Eg as M > 0. M€ Q,
as seen by Figure 2.3, so every point ¢ € R? is interior to K(M). But

M

some problems (g, M) do not have unique solutions, for otherwise M would

belong to P which it does not.

Let M € R*X™ and ¢ € R™ be given. If the matrix [ M | 7 ]
is a principal transform of [ M | ¢ | then, by Theorems 1.14 and 1.13,
respectively, we know that ¢ € int K(M) if and only if g € int K(M) , and
that [sol(q, M)| = [sol(§, M)|. From this we find

MeU & MeU.

This leads us to the following definition.

DerFINITION 2.5 If M € R™"*X" we say M is fully semi-monotone if
and only if every principal transform of M is semi-monotone. We denote

the class of such matrices by Ef.

We remark that E{, C Ep as the “empty pivot” is always legitimate:
M is always a principal transform of itself. Notice that being in E{, is an
inherited property of matrices. For, from Chapter 1, we know that being in
Eg is an inherited property, and also that a principal transform of a principal

submatrix will be a principal submatrix of a principal transform.

29
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The matrices used in Examples 2.2 and 2.3 show that E§ is a nonempty
class. As a matter of fact, Ef contains Py. This follows as any principal
transform of a Pg-matrix belongs to Pg, and as Pg C Ed . The matrix

used in Example 2.3 shows that Po C Ef is a proper inclusion.

Our remarks above the definition imply that
UC E} (2.2)

which strengthens (2.1). But, again, the inclusion is proper. Indeed,

0 —1

=]
1 0

] € E,
but with ¢ = (1,0) the problem (g, M) has the solutions

(w!,z') = (1,0,0,0)
(w?, 22) = (0,0,0,1) .

The corresponding cone K(M), shown in Figure 2.3, is quite revealing. Notice

that int K(M) contains the interior of the degenerate complementary cone
posC({2}).

2.2 Characterization of U-matrices

We have seen in the last section that U C Ef . The task now is to find
precise conditions under which a matrix in E§ will also be in U. It turns
out to be easier to state exact conditions for when an Ef-matrix is not in

U. The main result of this section is:l
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THEOREM 2.6 Let. M € R"*™. Then M ¢ U if and only if either
M ¢ E! or there exist a,B € (@) and 4,7 € 7 such that

() a#B, i#4,
(i)  (det M,,)(det Mpg) %0 and there exists a nonzero vector
v € R such that vTC(a); =vTC(B).; =0,

(iii) there exists z € R*~! with 2 > 0 and C(a);z € posC(8).;.

Taken together, conditions (i), (ii), and (iii) say that there are two full
complementary cones which have an (n — 1)-dimensional intersection on two

differently-labelled faces.
To prove Theorem 2.6, we first prove two lemmas.

LeEMMA 2.7 Let M € R*X*. M € Ef if and only if for all «, 8 € (%)
with det My, #0 and a7 B we have

int pos C(a)Npos C(B) = 0.

Proof. Let [ M |g] be the principal transform of [ M | ¢ ] gotten by block
pivoting on M,s. We know, by Proposition 1.15, that ¢ € int pos Cp(a)
if and only if g € int pos C;7(®) [if and only if § > 0]. If we assume that
M € Ef ,then M € E; . Letting C = C)s and using Proposition 1.13 with

Lemma 2.4 we conclude that
g€ intposC(a) = |sol(q, M) =1. (2.3)

For ¢ € intposC(a), we have C(a)"1q = z > 0 giving the solution
(w, 2) € sol(g, M), where 2, = 2o > 0 and ws = z4 > 0. If ¢ € pos C(8),
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then there is a solution (1, 2) € sol(g, M) with @g = 0, and as a# 8, we
have (w, z) ##(w, Z) contradicting (2.3).

Conversely, if we knew that intpos C(a) intersected no other com-
plementary cones, tk~n, as above, z = C(a)~! ¢ would give us a solution
to (g, M), and it would be the only solution. Thus (2.3) is valid; again by
Proposition 1.13 and Lemma 2.4, we have M € Eg . Since this holds for all

a € (%) for which det My, 5% 0, we have M € Ef .
a

The preceding lemma says that when M € Efo , no point in the interior

" of a full complementary cone lies in any other complementary cone.

LEMMA 2.8 Let L be an n-dimensional linear subspace of RP, and let

A and B belong to RP<™ where m > n. If, for 1,5 € m,

(i) spanA=spanB=L,
(ii) intposA;NintposB.;#0,
(i) spanA;=spanB;#L,

(iv) A, and B lie on the same side of span B.; (relative to L),

then
int pos ANint pos B7#4@.

Proof. From (i), we have the existence of a positive vector z € R2™~2 such
that
[Ag,—B3]z=0, z>0. (2.4)

If the conclusion were false, there would be no vector Z such that
[A,—B]z=0, Z>0.
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Then, by Stiemke’s alternative theorem (see Dantzig (1963)) there would exist
a vector u such that

0#£uT[A,—B] > 0.

(Without loss of generality, we may assume % € L.) But, by the same alter-

native theorem, the existence of a solution to (2.4) implies the nonezistence .

of a solution to

05 'u.T[A.a, —Bj;] > 0.

From this we deduce that
TJ.'TA.; = 'ﬁTB.j =0.

Thus % is.orthogonal to the span of A.; (which equals the span of B.;). Yet

GTA; > 0> %"B,;. Thus A; and B, lie on opposite sides of span By,

since by (iii) neither can lie in span B.;, a contradiction.

a

We remark that this lemma could be made stronger; e.g., we could allow

AeRPX", BeRPX* €7, 7 €3 and replace (i) and (iii) with

@i’) spanA C spanB = [
(ii’) spanAz£spanAg; _g spanB.j # L.

However, stronger results are not needed in what follows.

Proof of Theorem 2.6: Sufficiency. As we have already noted, U C Ef,
so M ¢ Ef implies M ¢ U. Suppose then that M € Ef and the three
conditions of Theorem 2.6 hold. Let a, 8, ¢, 5, v, and z be as described
therein. Define

H={q:vTq¢g=0}.
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Then by (ii)
pos C(a).sUposC(B).; C H.

Clearly H is (n — 1)-dimensional. By (ii), posC(a); and pos C(B).; are

also (n — 1)-dimensional. Condition (iii) implies
int pos C(a).;Npos C(B).; £ 0.
In fact, the stronger assertion

int pos C(a).; Nint pos C(B).; # 0 (2.5)

WA —

must also hold. To see this, let ¢ = C(a).sz . As ¢ is interior to pos C(a);,
the dimension statements above imply that for some ¢ > 0, all points _in H
within a distance € from g belong to int pos C(a).; . But clearly posC(8).; ,

which lies in H, contains interior points within € of ¢ ; hence (2.5) is valid.

Certainly C(a).; and C(B).; do not lie in H . If they lie on the same
side of H , then as pos C(a) and pos C(B8) are full cones, Lemma 2.8 implies
that int pos C(a)Nint pos C(8) # @, contradicting Lemma 2.7. So C(a).
and C(B).; lie on opposite sides of H . Hence

int pos C(a).; Nint pos C(B).; C int{ pos C(a)Upos C(B)} C int K(M) .
Let y=oaa {i}. Then
Cy)s=C(a); and C(7)s=C(8):.

Since i5£7, we have posC(y) C spanC(a); ; this implies posC(«) is a

degenerate cone. However,
int pos C(a).; Nint pos C(B).; C posC(v).
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As this intersection is nonempty, there exist points of pos C(y) in int K(M),
hence there are points § € int pos C(y) Nint-K(M) , and so (g, M) will have

‘more than one solution. That is, M ¢ U.

Necessity. We assume M ¢ U. Then |sol(q, M)| > 1 for some ¢ belonging
to int K(M) . Considering what must be proved, we assume M € Ef and

show that the three conditions are satisfied. There are two cases.

Case 1: ¢ is in the intersection of two full complementary cones. Assume
for the moment that one of the cones is pos C(@), i.e., the nonnegative

orthant. Let posC(u) be the other cone where u34@. Then there exists

. a unique vector z > 0 such that

Clu)z=q2>0.

If z, =0, i.e., the solution does not use any columns from —M but only
columns from [, then by the uniqueness of z, we have z = ¢, and the
solutions that arise from C(@) and C(u) are the same. If z, %0, we may
assume z, > 0. (If it is not, we may replace 4 by ¢ = suppz. Then
C(o)z = C(u)z. If pos C(o) is degenerate, the argument of Case 2 applies.)
Thus, as C(u) = ¢, we have

—Muuzy =g, 20, z, > 0.

But detM,,#0, and M,, € Ef as M € Ef§. Thereforc having
—M, .z, 2> 0 with z, > 0 says, with respect to the LCP (g, M,,), that
an interior point of a full complementary cone is contained in Rl , another

complementary cone. This contradicts Lemma 2.7.

For two full complementary cones, say pos C(\) and pos C(u), the ar-

gument just given can be made to apply by performing a principal pivot
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on My . (Let the resulting matrix be M and use the cones pos C+(9),
pos C37(Aau), and the correspondence between the cone structures of K(M)

and K(M).) Either way, Case 1 cannot occur.

Case 2: ¢ belongs to a degenerate cone. We now assume det M, = 0

and

d € pos C(u) Nint K(M) . (2.6)

Let
dim pos C(u) = s, 0<s<n.

Note that if s =0, then C(u) = —M = 0. But then M belongs to U.

From (2.6) we have
dim[pos C(p)Nint K(M)] = s.
Thus

dim {U[pos C'(p) Nint K(M) Npos C(\)] : det C(N\) 5# 0} = 3
x

as int K(M) is contained in the union of the full complementary cones. Since

the union is finite, there exists a g € (%) with det C(8) 50 and
dim{pos C(u) Nint K(M) Npos C(B)] = s.
Lemma 2.7 says pos C(u)Nint pos C(B) # 0, so

pos C(u)Nint K(M) Npos C(B) C 3 pos C(B).

36




Since pos C(u)N pos C(B) is a convex cone and int pos C(8) C int K(M), it
follows that

pos C() Nint K(M) (1 pos C(8) C pos C(6).5
for some 3. As
dim pos C() = s = dim[pos C() "\ pos C(8) 5],
we have pos C(u) C span C(f).; . The (n — 1)-dimensional subspace
H = span 0(8)

is the common boundary of the two closed half-spaces H+ and H—. Let
H? contain C(8).; . Now

int K(M)NposC(B).; #9,

whence

dimf{int K(M) Npos C(B).3] =n —1.

Suppose

det C(\) 540

pos C(\) Nint H— m} = dim[pos C(A\) Nint K(M) NpesC(B).;] < n—1.

Then there exists ¢ € int K(M) N pos C(8).; contained in no full cone that
intersects H—. Thus, there exists a number ¢y > 0 such that for all
€ € (0, o}

B(e,q)Nint H~ Nint K(M) = 8
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since int K(M) is in the union of the full complementary cones. But as
q € H, we have B(e,g)Nint H— $£@. Thus int K(M) does not contain an
open ball around g € int K(M), a contradiction. This implies there exists

a € (7)) with detC(a)5£0, posC(a)Nint H— # @, and
dim(pos C(a)Nint K(M) Npos C(B).;] = n —1.
Since posC(f) C H™, it is clear that a £ 8. Again
int pos C(a) Npos C(B).; = @
by Lemma 2.7, so

posC{a)Npos C(B).; € dposC(a).

As before (with pos C(u)), we must have pos C(a)Npos C(8).; lying in an
(n — 1)-face, say pos C(a).;, of posC(a). But

dim[pos C(a);Npos C(B);] =n —1 (2.1

and
dim{pos C(a);] = dim|pos C(8).;] =n—1, (2.8)

80

pos C(a);UposC(B8).; C H.

Pick v 0 orthogonal to H. Then

vTC(a)s = vTC(B).; = 0.
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Notice that C(a).; € int H— (for otherwise, pos C(a)Nint H— = @). Thus,
as C(B).,; € int H, and C(u).; € H, we have i3 7. In light of (2.7) and
(2.8), there exists a vector z € R ! such that ‘

C(a).sz € pos C(B).3, z>0.

This completes the proof. O

Notice, from the proof of sufficiency, that all degenerate cones of a
U-matrix must be in dK(M).

2.3 Variations on the Characterisation and Further Results on U-matrices

In the previous section a set of necessary and sufficient conditions was
given for a matrix not to be in U. These conditions describe U as a subclass of
Ef by stating exactly what “goes wrong” with an Ef-matrix when it is not
in U. It is of interest to look at other (sufficient) conditions on an Ef-matrix
that would “force” it out of U vis-a-vis (necessary) conditions that would
have to hold were the matrix not in U. This will give us a better idea of the
structure of U-matrices, especially by looking at why other conditions are not

both necessary and sufficient. With this in mind, we have
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THEOREM 2.9 If M € Ef NR™*™ and there exist a,,7 € (%) such
that

i) aop={i}#A{j}=aay,
(ii) © det Maa = ( and (det Mpp)(det M.”) >0,

(i) C(B).+ and C(v).; are on opposite sides of span C(a)
(that is, with z = C(8).., y = C(v).; , and A = C(a)s,
the inequality zT(I — A(ATA)7'AT)y < 0 holds),

then M ¢ U.

The basic idea here is that if in K(M) we have two nondegenerate cones

“sandwiching in” a degenerate cone, then the matrix cannot be in U.

Proof. By (i) we have that C(8)s = C(a)s: and C(y); = Cla);.
Since detM,o, = 0, we then have a vector v30 such that
vTC(B)s = vTC(y).; = 0. By Theorem 2.6 it remains to show that
int pos C(B).sNint pos C(v).; #®. Suppose not. Since posC(8).; and
posC(v).; lie in the same (n — 1)-dimensional subspace, and since
pos C’(ﬁ)_;J = pos C('y)ﬁ , it follows from Lemma 2.8 that C(8).; and C(~).
lie on opposite sides of spanC(B); . (Notice that C(a), = C(B)y =
C(7),; ) Thus there exists a positive number, 6, a nonzero vector

v € span C(a), and vectors z,Z € R* 2 for which

C(B); = C(B).yz+v
C('y)..- = C(’Y).G F—0v.

From (iii), there exists a positive number, 7, a nonzero vector w € R™, and

vectors z,7 € R for which

C(B)i= C(B)sz+w
C);=C(7)3T—rw.
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Thus,

detC(6) = det] C(B);5 | C(B)y= +v | C(B)az +w |

where the matrix is represented with column ? on the right, column j in the

middle, and all other columns on the left. Hence

det C(B) = det{ C(8).5 | C(B).5 2 +v | w]
= det[ C(8).5 | v]|w])

= —det[ C(B).4 | w]|v]

= — o det] C(1).5 | —rw | —0v ]

— _% det{ C(7).5 | —Tw | C(1).52 — v ]

= — - det| C(1). | C(1)3 7 — 7w | Cl) 57— 0w]
= _% det c(v).

This contradicts (ii), so our supposition was false and the theorem follows.
O

Recall that Po C Ef. If we apply Theorem 2.9 to a Pg-matrix,
the inequality “>” in (ii) can be replaced by the symbol “3£” and the
condition more closely resembles that in Theorem 2.6. Notice, in the proof of

Theorem 2.6, that if we knew M € Py and

Cle)s & pan C(B) ;,
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we could define

I

a{s}

2 @l Rl
0

B
B
Ba{ij}

and then @, B, and 7 would satisfy the hypotheses of Theorem 2.9. All

we've done is verify that C(8),; and C(a).; together constitute a lincarly
independent set of columns so that, when C(a).; is adjoined, a nondeg:.  ute
complementary cone with the desired position is formmed. Thus, we necd to
have C(a).; € span C(B),;; and C(B).; € span C(a).;; to spoil this reasoning.
It seems plausible that the conditions of Theorem 2.9 are necessary as well

as sufficient for M € Po \ U. However, this is not the case.

ExXAMPLE 2.10 Let

0 —1 0
M=1{0 0 -1
1 0 0

It is easily checked that M € Py. The only full complementary cones
corresponding to it are posC(@) and posC(3) - i.e., pos/ and pos—M.
The hypotheses of Theorem 2.9 cannot be satisfied by this matrix since the
index sets B and 4 can differ by only two elements. But M ¢ U as, for
g = (1,1,0)T € int K(M), the probtlem (g, M) has the solutions

(w!, 2}) = (1,1,0,0,0,0)
(w? 2%) = (0,0,0,0,1,1).

This example can be used to disprove the necessity of the conditions in
Theorem 2.9 because we can construct the two full cones, that “sandwich

in” the degenerate cone, so that their index sets differ by more than two
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elements. (Clearly they must differ by at least two elecments.) Thus, we might
consider combining conditions (i) and (ii) from Theorem 2.6 with condition

(iii) of Theorem 2.9 to get

CorOLLARY 2.11 If M € Ef NR"X" and M ¢ U then there exist
a,B € (%) and 4,7 € @ such that

0] aF# P, i#7,
(i)  (det Myo)(det M) 520 and there exists a nonzero vector
v € R"™ such that vTC(a): = vTC(B).; = 0,

(i) C(a).. and C(B).; are on opposite sides of span C{a).; = span C(B).;
[that is, (+TC(a).)(xTC(B).;) < 0].

Proof. This follows immediately f_rom Theorem 2.6, Lemma 2.7 and
Lemma 2.8. For (i) and (ii) are from Theorem 2.6, and if C(a).; and C(8).;
were on the same side of span C(a).;, then condition (iii) of Theorem 2.6 and
Lemma 2.8 together would imply that int pos C(a)Nint pos C(B)# @, which

would contradict Lemma 27

O

To show that these conditions are not sufficient for M not being in U,

we have

ExaMPLE 2.12 Let
0 1 07
M=|0 0 1 }
1 0 0
This matrix belongs to Py, and so is in Ef. The only full complementary
cones are pos] and pos —M which, in this case, meet only at 0. Thus,

int K(M) = int pos I Uint pos —M
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and clearly M € U. Yet the three conditions mentioned above are satisfied
as

span C(0) 3 = span C(3) ¢
and C(9).3 and C(3).1 lie on opposite sides of span C(#).3 = spanC(3); .

Another possible variation of Theorem 2.6 would be to make condition
(iii) much stronger. This would clearly preserve the sufficiency of the condi-

tions, giving us

. CoroLLARY 2.13 Let M € Ef NR™X"_ If there there exist a, 8 € (7)
and 7,7 € ® such that

i) a#B,i#7,
(i)  (det M,q)(det Mpp) £ 0 and there exists a nonzero vector
v€ R* such that vTC(a); = vTC(B).; =0,

(i) posC(a).s C posC(B).;,

then M ¢ U.
a

However, this new condition (iii) is too strong to be necessary, as is shown

by

ExaMPLE 2.14 Let

0 0 0 -1

0 0 0 -—1
M=

0 0 0 1

Lt 0 0 o

Obviously M € Py C E}, and the only full complementary cones are
posC(8) and posC({1,4}). They intersect only on the respective faces
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pos C(0).3 and pos C({1,4}).; . (Notice that span C(0).3 = spanC({1,4}).1 .)

For z = (1,2,1)7 we have
C{1,4}).1z=C(9).az

so the two faces do have (relative) interior points in common. Hence M ¢ U -

by Theorem 2.6, Now

00 1
cnapi=| . -
AT Y 1
0 0 0
and
1 0 0
co) 0 1 0
A 0 0 1
0 0 0
But
"0 0 1 0 0°
0
1 0 0 1 0
0 | & pos
o1 <l 0 0 1
Lo 0 o 0 0 0
and
10 0 0 0 17
0 1 0 1 0 1
0 | € pos
0 0 1 . 0 1 —1
L0 0 o 0 0 0.

so neither face contains the other.

We now examine the state of affairs for vectors ¢ € dint K(M) .
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TueoreM 215 If M € E{NRN"X™ and ¢ € dint K(M), then
|sol(g, M)| = oo . (In fact, sol(g, M) is unbounded.)

Proof. We know g must lie in some (n— 1)-dimensional face of dint K(M).
Since '
q€dint K(M) C J {9posC(a):det C(a) 540},
a€E(R) T
g must belong to an (n — 1)-dimensional face, C(a).;, of some full com-

plementary cone pos C{a) such that
dim[pos C(a)sNdK(M)]|=n—1.

The union of all points in pos C(a);NAK(M) that are contained in a
k-dimensional complementary cone with & < n — 2, that are contained in
the boundary of an (n — 1)-dimensional face of a complementary cone, or
that are contained in an (n — 1)-dimensional face, of a complementary cone,
not contained in span C(a).; is a finite union of sets of dimension n — 2 or
less. Hence, we can find a point ¢ € int pos C(a).; NK(M) notin this union
that is arbitrarily close to g. If § € pos C(B).; for some j € 1, 87 a, with
det C(B8) 7% 0, then pos C'(ﬁ).5 C span C(a).; and g € int pos C(B).; . So we
have either C(a); and C(B).; on the same side of span C(e).;, which by

Lemma 2.8 implies that

pos C(a)Npos C(B) # @

contradicting the assumption that M € Ef, or else we have C(a). and

C(B).; on opposite sides of span C(a).s which implies that

g € int[pos C(a) U pos C(B)] C int K(M),
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contradicting the fact that § € dK(M). So g is contained in only one

(n —1)-dimensional face of one full cone. From Lemma 3.2 of Saigal (1972a),

~we see that ¢ must be contained in some complementary cone, posC(f8),

where C(B8)z = 0 for some nonzero z > 0. As there are finitely many such
cones, and as ¢ was arbitrarily close to ¢, we can find a sequence ¢, — ¢
in some such cone. As all such cones are closed, we may assume without loss
of generality that ¢ € pos C(8). Thus ¢ = C(B)y for some y > 0, and for

each \ >0, y+ Xz will give us a different solution to (g, M).

Theorem 2.15 explains why we must define U with respect to the interior
of K(M), rather than all of K(M). If (g, M) has a unique solution for
g € K(M), then certainly M € U. But Theorem 2.15 then requires that
dint K(M) = 0. Thus we must have int K(M) = R™ thus M € Q.
However, UNQ = P which gives us nothing new. In fact, the proof of
Theorem 2.15 shows that if ¢ € dint K(M) then q is in a strongly degenerate

cone. Thus we have

COROLLARY 2.16 If M € Ef, then dint K(M) is contained in the

union of the strongly degenerate cones.

0l

COROLLARY 2.17T If M € U and M is nondegenerate or weakly degen-

erate, then M € P,
0
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2.4 Ef N Qo -matrices and UN Qg -matrices

In this section we confine our attention to those matrices within Eg
and U which are also in Qp. (Recall that M € Qp if and only if K(M) is
convex.) We start off with a lemma used to prove the next (familiar) thcorem.

It expresses the underlying structure of d K(M) for UN Qo -matrices.

LEMMA 2.18 Suppose M € UN Qg NRN™X™ and let pos C(a) be a full
complementary cone relative to M . Define the index set § = aa{i}. Then
span C(a).; is a supporting (boundary) hyperplane of K(M) if and only if
C(B).; lies in spanC(a); .

Proof. If C(B).: € C(a).:, then posC(B) is a degenerate cone. Therefore
pos C(B) € dK(M) as M € U. Since pos C(8) C span C(a).;, we see that

dim([span C(a)sNAK(M)]=n—1.

Thus span C(a).; is a supporting hyperplane of the finite convex cone K(M).

Conversely, suppose C(B).; € spanC(a).: . If C(a), and C(8).; were
on the same side of span C(a).;, then by Lemma 2.8, the interiors of the
full complementary cones posC(a) and posC(B8) would intersect. This
contradicts that M € Ef . Thus, C(a).; and C(B).. are on opposite sides

of span C(a).; . Hence we have
int pos C(a).; C int[pos C(a) U pos C(B)] C int K(M),

so span C(a).; cannot be a supporting hyperplane of K(M).
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Without the assumption that M € U we find that both directions in
Lemma 2.18 fail to hold. The matrix
’ 0 —1
M=, )
1 0
see Figure 2.3 again, is in Qg N Ef but is not in U. As always, pos C(@)

is 2 nondegenerate complementary cone, and C({2}).2 € span C(@).s . But
span C(9).5 is not a supporting hyperplane to K(M). For the other direction,

v=[7 L

This matrix is also in Qo but not in U. In this instance, K(M) = %2 .

consider

Lemma 2.18 would make each boundary hyperplane contain a degenerate

complementary cone. But this is clearly not the case.

Notice that the second of these matrices is not in E{,, and cannot be as
the second part of the proof only needed M € Ea . Notice, also, that the
first of these two matrices belongs to Py, but not the second. In fact we

prove

COROLLARY 2.19 Suppose M € Py N Qp NR™X™ and let pos C(a) be
a full complementary cone relative to M. Define the index set
B = aa{i}. If spanC(a); is a supporting (boundary) hyperplane of
K(M), then C(B).; € span C(a); .

Proof. Suppose C(8).; ¢ spanC(a);. If C(a).; and C(B).; are on the
same side of span C(a).: = spanC(B).:, then det C(a) and det C(B) are
not zero and have the same sign. Thus (det Mag)(det Mss) < 0. This
is impossible when M € Pg. Thus, Cla); and C(B).; are on opposite

sides of spanC(a);. As in the proof of Lemma 2.18, we have
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int pos C(a).; C int[pos C(a)Upos C(B)] C int K(M), so spanC(a); can-

not be a supporting hyperplane of K(M).
' O

With Lemma 2.18, we can show that for M € Qg the conditions of

Corollary 2.11 are sufficient as well as necessary for M € Ef not to be in U.

We have

THEOREM 2.20 If M € Ef N Qo NR™*", then M ¢ U if and only if
there exist a,8 € (%) and 7,7 € @ such that

(i) (det Myqo)(det Mpg) 7% 0 and there exists a nonzero vector
v € R™ such that v7C(a); =vTC(B).; =0,

(iii) C(a).: and C(B).; are on opposite sides of span C(a).; = span C(8).;
[that is, (vTC(a).)(v"C(8).;) < 0]

Proof. The necessity part of this theorem follows from Corollary 2.11. Now
suppose that the conditions are satisfied. We know that pos C(a) is a full
complementary cone. As i3 j and spanC(a); = spanC(8).; we would
have C(a).; 7% C(8).. and C(B).: € spanC(a).;s . So if M were a U-matrix,
Lemma 2.18 would imply that spanC(a); is a supporting hyperplane of
K(M). But this is impossible if C(a).; and C(8).; lie on opposite sides of

span C(a); .
O

Condition (iii) in Theorem 2.20 is non-trivial. Figure 2.4 shows K(M)

0 -1
(i Y
1 1

for the inatrix
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which is in E§ N Qo . This matrix satisfies (i) and (ii) with (a, 8,1,7) =
(0,2,1,2). However, (iii) is not satisfied, and, indeed, M € U.

Notice that Theorem 2.20 implies Example 2.12 must have used a matrix
M not in Q¢ which, in fact, it did. However, Example 2.10 used a Qg -matrix
so we cannot strengthen Theorem 2.9 for Ef N Qo -matrices. Example 2.14 .
does not use a Qg -matrix, but we still cannot strengthen Corollary 2.13 as

seen by

ExaMPLE 2.21 Let

o —1 -1 -1

0 0 —1 -1
M=

0 0 1 1

1 0 0 0

The full complementary cones are C(8), C({3}), C({1,4}) and
C({1,2,4}). Suppose, for the sake of contradiction, that M ¢ Eg. Then
there is a nonzero z > 0, so that for any i € 4, if 2; > 0, then (Mz); < 0.
As we will always have (Mz);,(Mz)4 > 0, we must have z3 = z4 = 0. But
then we will have (Mz)2 > 0, thus requiring that z2 = 0. Cumulatively
these conditions will cause (Mz); to be nonnegative, leading us to conclude
that z; = 0, giving a contradiction. Thus M € Eg. M has three non-
trivial principal transforms which correspond to block pivots on Ma, where

a can be {3}, {1,4},0or {1,2,4}, and are, respectively,

0 —1 —1 0 o 0 0 1 6 0 0 1
0 0 —1 0 1 1 0 0 -1 1 0 0
0 1 —1{ | -1 —1 o0 of 0 —1 0 0
1 0 0 o -1 —1 —1 0 0 —1 —1 0

Similar arguments will show that these three matrices are all in Eq. Thus
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M € Ef . Now, it is clear that K(M) C pos[ I | —M |. Given the following
fact (see, for example, Proposition 4.2 of Doverspike and Lemke (1979))

MeQ & pos[Il;M]=U{posC(a):detC’(a);é0},

and noting that

pos{I|—M]= {z€R*:z(,29,23 > 0 and z,,22 > —23},

posC(P) = {z € R*:z4,22,73,24 > 0},
posC({3}) = {z € R*: 2,22, —23,74 > 0 and 1,23 > —z3},
posC({1,4}) = {z€R*:zy,22,—24 > 0and 22 > z; > —z3},
posC({1,2,4}) = {z € R*:2,22,—24 > 0and 71 > 22 > —z3},

we find that M € Qg . Asin Example 2.14, for z = (1,2,1)T, we have that
span C({1,4}).1 = spanC(#).; and C({1,4}).1z =C(@)3z; thus M ¢ U.
However, there are only four candidiates for the 4-tuple (a,f,%,7) in the
conditions of Theorem 2.6, and checking them shows that, for each, we have

some g € pos C(a).; \ pos C(,B)] and some § € posC(B).; \ posC(a);,

(C(0),C({1,4}),4,1) g=1(2,1,0,007 d=(1,1,—1,0)T
(C®),C({1,2,4}),4,1) q=1(1,2,0,0)T §=(1,1,—1,0)T
(C({3}),C({1,4}),4,1) ¢=(21,0,0T g=(1,1,1,0)T
(C({3}),C({1,2,4}),4,1) g=1(1,2,0,0)7 i=(1,1,1,0)T.

Hence, M is an example showing that Corollary 2.13 cannot be strengthen
to say that its three conditions are necessary for a matrix in E{, N Qo not

to be in U.

We now come to a result which says that when K(M) is convex and

(g, M) has a unique solution for all ¢ € int K(M), the matrix M cannot
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have any negative principal minors. The proof sheds light on the conical

structure of Qg N U-matrices.
THEOREM 2.22 Qo NUC Py .

Proof. Let M € Q NUNR™*", There are two cases. If M € Q, then
M e QNU = P C Py . Assume therefore that M € Qo \ Q. Thus,
K(M) #R™. Suppose we have a collection of index sets ay,...,ax € (7)
for which
det Moo, >0, j=1,...,k. (2.9)

We know k > 1 since a; = @ belongs to the collection. Now consider

k

Cr = U pos C(a;),
=1

and suppose C) 7# K(M).

As M € Qp, K(M) is a closed convex finite cone. The cone Cj is
closed and polyhedral; by our assumption, it is a proper subset of K(M).
Thus there must exist a point ¢ € int K(M) \ Cx. Let p € int Cr. (Note:

Ci contains N7 and so has a nonempty interior.) Let
L={r:r=(1—XNp+XN, 0<X<1},

andso int L= {r:r=(1—XNp+Ng, 0< X <1}.As Lnint K(M) #8,
K(M) is convex, and (hence) L C K(M), we have

int L C int K(M) and int LNACL#0.

Thus,
aCkNint K(M) #0.

53




Now 8C) is (n — 1)-dimensional and contained in

U pos C(aj).i.
j€k
I€RH
Hence as the union of the boundaries of the pos C(a;).¢ is (n—2)-dimensional,
and as we can slightly perturb the position of the point p we selected and

still keep it within int C, then we may assume that
int pos BN3Ckx Nint K(M) # 0 (2.10)

where B = C(a;).a € R**X(*=1) for some a; in the given sect satisfying
(2.9). Let
By =a;a{n}.

Now posB C posC(B;). If detC(B;) = 0, then there exists a point
g € int pos C(B;) Nint K(M) , and (g, M) has infinitely many solutions. This
contradicts the hypothesis that M € U. Thus det C(8;)# 0, and accord-
ingly, det Mp,p, 7%0. If det Mp,g, < O, then as det My,a, > 0, we have
(det C(a;))(det C(B;)) > O implying that C(a;).n and C(B;).n lie on the
same side of span B. Thus, by Lemma 2.8, int pos C(a;) Nint pos C(G;) # 9,
which contradicts the assumption that M € U. Thus det Mp,5, > 0, and

we have I.,, and —M.,, lying on opposite sides of span B. Hence
int pos B C int{pos C(a,) U pos C(#;)] .

From this and (2.10) we have §; € {a1,...,ax}. Let ax41 = B; and
adjoin it to the collection of known index sets for which the corresponding

principal minor is positive. We repeat this construction until ! index sets are
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found and

]
Ci = | pos C(a;) = K(M).

j=1
Ir ﬂ.e (») and B¢ {ay,..., a1}, then det Mg = 0; otherwise
int pos C(B)Nint K(M) # @
and this implies there exists a; (1 < j < 1) such that
int pos C(B8) Nint pos C(a,) 7 8

which contradicts our assumption that M € U. o

The next theoren: sharpens the ideas concerning the structure of dK(M) ,
for M € Qo NU, that we developed in the proof of the last theorem.

Tueorem 223 If M € (Qo \ QNUNRX™, then there exists a
nonnegative m X n matrix A such that

K(M) = {q: Aq 2 0},
and the number m is minimal. Moreover, if
ay = supp Ax. forall kewm

then det M,,o, = 0. If det Mpg = 0, for some 8 € (R), then there exists
k € W such that ax C 8.

Proof. From Theorem 2.22, we know that M € Po \ P. The cone
K(M) being convex and finitely generated can be expressed as a polyhedral
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convex cone (see Weyl (1935)). Thus there exists a matrix A € R™*"™ such
that
K(M) ={q: A9 >0}.

The matrix A can be chosen so that none of its rows is redundant. Since
RY C K(M), it follows that A > 0 (and Ak. 740 for all k € 7). Each of
the hyperplanes

H(Ax)={z€R": Al 2 =10} kem
is the boundary of a half-space
HY(Ay)={zeR": ALz >0} kEﬁ.

and has an (n— 1)-dimensional intersection with d K(M) . For each &k € m,

there exists an a € (7) such that
dim[pos Cla)NH(As.)] =n—1.

If det Moo = 0, then
pos C(a) C H(Ag.). (2.11)

If det Maq %40, then by (2.11) there must exist an index ¢ € @ such that
dim[pos C{a)sNH(Ak.)] =n—1, (2.12)

and

C(a); € H(Ax.).

Let =as{i}. If det Mpp5£0, a8 M € Py, we have

(det C(a))(det C(B)) < O.
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So C(a).; and C(B).; lie on opposite sides of spanC(a).; = span C(B8);.
Thus
int pos C(a).; C int{pos C(a)U pos C(B)] C int K(M),

which contradicts (2.12). So, det Mg = 0.

Hence for every k € ™, there exists a fx € (M), with det Mg,5, =0,
and such that (2.11) holds with a = 8. Then

J€ar = I &H(Ax) = ILig€posC(f) = —M€ H(Ak.),

and
j&ax = Ix€H(A:).

Thus, the columns of C(ak) are all in H(Ag.) which implies det My, o, = 0.
In fact, if 8 € (A) and det Mgy = 0, then posC(8) C dK(M), so
pos C(B) C H(Ak.) for some k, and as above, j € ax implies I.x & H(Ay.),

so C(B).; = —M.; . This implies ax C 8.
O

We now examine a situation which could be viewed as a partial converse
to Theorem 2.22. It involves matrices belonging to a special subclass of Pg. -
We shall show that these matrices belong to U and that they give rise to

cones K(M) of a special form. To this end, we introduce

DEFINITION 2.24 If M € Py NR"X", then M € P; if and only if
there exists a unique index set a € (%) such that det M,q = 0.

Thus, M € P; if and only if it has nonnegative principal minors
precisely one of which is zero. A P;-matrix may or may not belong to Q.

For instance

M=[1 B

]erQ,
1 0
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see Figure 2.5, whereas

-—1

1
M=
-1 1

Jerina,
see Example 2.2. In the former case, the matrix does not belong to U, but in

the later case it does,

THeorEM 2.25 If M € (P, \ Q) NR**" then M € U, and K(M)
is a half-space. Furthermore, let a € R" be the normal to the hyperplane
OK(M). If det My, = 0, then a can be chosen so that a, > 0 and

ag =10,

Proof. Let K ((M)be the union of the full complementary cones associated
with M. Then 8K (M) is contained in the union of the boundaries of the

full cones. Suppose pos C(a) is a full complementary cone and
dim[dK (M) Npos C(a)y) =n—1.

Let 8 = aa{i}. If posC(@) is a full cone, we may ask: where is
C(B).; with respect to span C(a).y = span C(B8).4 ? If C(B8).; is on the same
side of spanC(a).t as C(a).i, then (det C(a))(det C(8)) > 0 giving us the
contradiction that (det M,,)(det Mgg) < 0. If C(B).; is on the opposite
side, then

int pos C(a).4 C int[pos C(a)U pos C(B)],

dim[dK (M) Npos C(a)s) < n—2,

a contradiction. Hence pos C(f) is degenerate and contains C(a).; . There-

fore K (M) is contained in the union of the degenerate complementary
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cones. But, by hypothesis, there is only one degenerate complementary cone.
Since M ¢ Q, we have 0K (M) #0. Thus, dK(M) is contained in this

one degenerate complementary cone.

Let L = {z : aTz = 0} be the affine hull of this degenerate com-

plementary cone. (Both are (n — 1)-dimensional.) Being the boundary of .

an n-dimensional polyhedral cone contained in L, 8K (M) cannot have a
boundary relative to L. Hence 8K (M) = L, and K(M) is a half-space
{z:4Tz > 0} with 054420 as R C K(M).

If det Moo = 0, then pos C(a) is the only degenerate complementary
cone. Thus I; ¢ L if and only if 1 € a. This implies ao > 0 and ag = 0.

Moreover M € Py C Ef , and the fact that the only degenerate cone

is OK ¢(M) forces the three conditions in Theorem 2.6 to fail to be satisfied,

so we have M € U.
O

As final remark before lcaving this chapter, lest the impression be given
that E{, is made up of only matrices that are Pg, U, or Qp, we give an

example of a matrix that is in Ef \ (Po UUU Qo).

ExaMPLE 2.26 Let

0o 0 —1 0

0 0 0 1
M=

1 0 o 0

0 1 0o 0

Clearly M ¢ Pg as det Mpq < 0 for a = {2,4}. M has exactly four non-
degenerate cones: C(8), C(%), C({1,3}), and C({2,4}). Each is a diffcrent

orthant in R4, so the interiors of these four cones are pair-wise disjoint, and
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hence M € Ef . However, with (a,8,1,7) = (0,{1,3},3,1) we can satisfy
the conditions of Theorem 2.6 —in fact, pos C(8).3 = posC({1,3}).; —and so
M ¢ U. Finally, we have (0,2,0,0)T € K(M) and (0,0,0, —2)T € K(M),
but (0,1,0, —1)T ¢ K(M), so K(M) is not convex. Hence M ¢ Qo . Thus
M € Ef \ (Po UUU Q) as claimed.
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CHAPTER 3.
INS-MATRICES: CHARACTERIZATION RESULTS

3.1 Introduction to INS-matrices

We have now defined and studied the class U which generalizes the class
P. We are led to wonder about possible larger classes containing U. As before,
we must decide what properties we wish this larger class to inherit from U
and what properties we wish to relax. The one essential property of U is the
uniqueness of the solution to (g, M) where g is in the interior of K(M).
However, the main properties of the combinatorial and geometric structure
of K(M), that is peculiar to those M € U, is derived more from having the
same number of solutions everywhere within the interior of K(M) than from
that number being, in particular, one. With this in mind, we focus attention

on understanding this structure. We have

DermniTioN 3.1 For any k € Z, a matrix A is said to be an
INS, -matrix, A € INS,, if and only if

A€ U{M € R : |sol(g, M)| = k, for all g € int K(M) }.
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DerFINITION 3.2 A matrix A is said to be an INS-matrix, A € INS

(Invariant Number of Solutions), if and only if

Ae |J INs,.
keZ,.

As before, and as will be shown in Theorem 4.7, we must define these classes
with respect to ¢ in the interior of K(M), not all of K(M), otherwise these

classes will contain only the P-matrices. Notice that we have
U =1INS; CINS.

Thus the INS-matrices seem a natural extention of the U-matrices, but are

strictly larger as seen by

Examrrr 3.3 Let

0 —2
m=| |
—2 1

As illustrated in Figure 3.1, M € INS,. Notice that the full complementary
cones can be partitioned into two groups, {C({1,2})} and {C(#),C({2})},
such that the union of the cones in each group covers the interior of K(M),
and the interiors of the cones in each group are pairwise disjoint. We also see
that |sol(q, M)| for ¢ € @K(M) is one or infinity — never two — for points
in, respectively, pos C(7).2 and int pos C(7).; .

In the last chapter we noticed that UNQ = P. A result of Murty's

shows that a similar result holds for the class INS.
THeEOREM 3.4 INSNQ =P.

Proof. If M € INSNQ, then int K(M) = R™, so |sol(g, M)| is constant
for all g € R™. Theorem 7.10 from Murty (1972) states that this constant is
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equal to one. Hence M € U, and we have M € P as desired. .

Before continuing on to the next sections, where we look at what goes
into making an INS-matrix, there are a few concepts which should be brought

up first.

DEFINITION 3.5 Let M € R*X", we then define

K(M) = U pos C(a); .

K(M) is the union of the faces of the complementary cones. It contains, in
some cases equals, dK(M). In Example 3.3, (1,0)T € K(M) \ dK(M),
while with M = 0 we have K(M) = 0K(M). K(M) is the set of all
g € R™ that are degenerate with respect to M . Being the union of a finite
collection of sets with dimension n—1 or less, K(M) has zero n -dimensional

volume. It is a closed cone in R™.

We will be interested in the open set R*\ K(M) . Let L be the collection
of the connected components of R\ K(M) . As R™ is locally path connected
and as R"\ K(M) is open, the path components of R" \ K(M) are the
same as the (connected) components. See, for example, Munkres (1975). T
“almost” partitions R™, in that it partitions R™\ K(M) which is “almost”
R*. If T € &, then I is an open polyhedral cone, i.e., 3T is a finite collection
of (n— 1)-dimensional finite cones. It is not necessarily true that I' = int T,

although it will be shown later that T C intT. For example

ExaMPLE 3.6 Let

0 0 0
M=]1 0 0
0 0 0




then ¥ contains (o components: I'; = int .’R‘l and

T =int[R\RL |\ {z€R:2; = 0,23 > 0}.

Iy #intT; = int[R3 \ R3_]. This also shows that, if T EA 3, then T is not
4 +

necessarily convex. For another example of this

ExaMpPLE 3.7 Let

0 0 —1
M=]l]0 0 -1
0 0 -—1

Then ¥ contains three components:

Iy =int[R*\ %3],
'y =intposC({3})={z€ R :2; > 23,22 > 73,23 >0},
I's =intR% \ posC({3}).

Here only T, is convex, although T'; = intT; for ¢ = 1,2,3. We will return

later to the subject of convexity and the I';.

We now discuss necessary conditions for a matrix to be INS.

3.2 Necessary Conditions for INS-matrices

In the last section we introduced the partition of R" \ K(M) by open

polyhedral cones I' € ¥. The importance of this structure is contained in

Tueorem 3.8 If "' € X, and ¢q,§ €T, then
" |sol(g, M)| = [sol(, M)|.
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Proof. Fix ¢, €T € E. As ¢,§ € K(M), we know that ¢ and § are
not contained in any degenerate complementary cone, and are not contained
in the boundary of any nondegenerate cone. From Chapter 1, we know that
any solution to (g, M) is associated with a complementary cone containing
q. We also know that, if the cone is nondegenerate, there is only one solution
associated with it. Now if ¢ € posC(a) then ¢ € intposC(a). Letting
z = C(a)~!q > 0, the solution associated with this cone is (w, z), where
éa =1z, > 0 and wg = z4 > 0. Asin Lemma 2.7, any other solution (@, )
is associated with another complementary cone pos C(f) containing g. Also,

any other complementary cone containing ¢ is associated with a different

- solution. We therefore see that {sol(q, M)| is the number of complementary

cones that contains ¢. The same holds for §.

Suppose that for some a € (7) we have ¢ € pos C(a) and g ¢ pos C(a).
Then any path from ¢ to § must contain a point in d pos C(a) C K(M), so
g and § are not in the same path component of R\ K(M), i.e., not in the
same I', a contradiction. Thus any complementary cone containing q con-
tains g, and vice versa. Thus they are in the same number of complementary |

cones, and so [sol(g, M)| = [sol(g, M)].
A a

The proof just given shows that for any complementary cone, pos C(a),

andany I'e &,

I'NposCla)#0 & T C posC(a).

The main result of this section is
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THEOREM 3.9 If M € INS, then

dK(M) = U {posC(a); : pos C(a).; is not propér}.
a€&(®)

Proof. Let pos C(a) be a degenerate cone. Suppoée pos C(a) Nint K(M) 5 9.
Then there will exist a ¢ such that

g € int pos C(a)Nint K(M) .

From Proposition 1.6, we know that |sol(g, M)| = co. As M € INS, there
must be infinitely many solutions for each point in the interior of K(M).
From the broof of Theorem 3.8, we see that for any point in R™\ K(M) the
number of solutions it has to the LCP is equal to the number of complemen-
tary cones containing it, which is finite. Hence int K(M) C K(M), but this
is impossible as the set on the left is n-dimensional and the set on the right
is (n — 1)-dimensional. Thus all degenerate cones are contained in dK(M) .
(This also shows that INS., = @, so our definitions cover just what we want

without any technical problems.)

Suppose now that posC(a) is a full cone, pos C(a).; is a reflecting face,
and pos C(a).s Nint K(M) £ @. Then there is a ¢ € int pos C(a).s Nint K(M)
such that for any B € (®), j € &, we have

| dim[pos C(B).3] =n —1
7€posC(f)y = { g € int pos C(B).; C span C(a); (3.1)

and any small enough open ball around ¢ is bisected by int pos C(a); with
the two open half-balls contained in 'I‘o,I‘l € I, respectively. (We are not
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assuming ['g7#T';.) Refer to Figure 3.2. To see this more clearly, notice

that the set of points that are in either

(i)  the boundary of an (n — 1)-dimensional face of a complementary cone,
(i) a k-dimensional complementary cone where k < n —1,
(iii) the intersection of pos C(a).; with an (n — 1)-dimensional face

(of a complementary cone) not in span C(a).; ,

is a set of dimension less than n — 1, while dim[int posC(a).;] = n — 1.
Furthermore, as all the k-dimensional facets of K(M) are closed and finite
in number, we know that for an open ball around ¢, that has a small enough
radius, we will have a k-dimensional facet of K(M) intersecting the open

ball if and only if that facet contains q.

Since pos C(a).; is a face of the full complementary cone pos C(a), then
either ['g N pos C(a)# B or I'y Npos C(a)7# 0, but not both as pos C(a) lies

entirely on one side of pos C(a).; . Thus without loss of generality we assume
g C posC(a) and Ti;NposCa)=0.

(Thus, indeed, T'o#T'y .) Let Hy and H; be the two closed half-spaces
with span C(a).; as boundary, where I'c C Hg and I'y C H; . Suppose
that there is some complementary cone, pos C(8), that contains I'; but
not T'p. Then it must be a full cone and have some face, say pos C(8).3,
containing ¢. By (3.1) this face lies in span C(a).;, hence C(B).; liesin H,.
However, as pps C(a).; is reflecting we have both I; and —M.; in int Hy,
a contradiction. Thus no complementary cone contains I'; and not I'g. But

pos C(a) contains I'y and not T';. Hence,

sol(q?, M)| < [sol(¢%, M)| 4 1 ®€ly, ¢tel,. (3.2)
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Since ¢ € int K(M), we have |sol(g!, M)| > 0, so ToUT; C int K(M).
Hence (3.2) implies that M ¢ INS, a contradiction. .'hus

MecINS = dK(M)D U {pos C(a).; : pos C(a).; is not proper }.
a€(®)

SER

Now suppose that ¢ € dK(M) . Clearly g is not interior to any full
cone. Suppose that it is not contained in a degenerate cone. Then it is on
~ the boundary of some full cone, hence ¢ € dint K(M). As int K(M) is

an n-dimensional polyhedral cone, dint K(M) is the union of finitely many
| (n — 1)-dimensional finite cones, each contained in some degenerate cone or
a face of a full cone. If posC{a)s is a proper face, then we know I,; and

—M.; are on opposite sides of span C(a).s . Thus
int pos C(a).; C int[pos C(a)UposC(a a {i})] C int K(M),

giving
dim(pos C(a)sN3K(M)| < n—1.

Thus pos C(a).; is not a face containing one of the (n— 1)-dimensional finite
cones of dint K(M). Thus 8int K(M) is contained in the reflecting faces

and the degenerate cones, and, hence, so is d K(M).
a

COROLLARY 3.10 Let M € m“x", then

dK(M) C U { pos C(a).s : pos C(a).; is not proper }.

a€(®)
5

[p!




Proof. Simply notice that in the last part of the proof of Theorem 3.9 we

never used the fact that M € INS when showing this result. O

Saigal (1972b) uses the concept of a “rcgular pseudomanifold.” We

borrow the terminology for the similar, but stronger, concept embodied in

DEFINITION 3.11 Let M € R"X"™, then K(M) is said to be regular if
and only if

dK(M) = U {posC(a); : pos C(a).; is not proper }.
a€(R)

iew

Theorem 3.9 then says that
MeINS = K(M) is regular.

This is the general necessary condition for a matrix to be in INS. In the next

section we take up the question of this condition’s sufficiency.

3.3 Sufficient Conditions for INS-matrices

We now know that if a matrix M is in INS then K(M) is regular. The
natural question is to ask whether this is a suflicient condition. To this end,

we prove the

LEMMA 3.12 Assume M € R*X™ and K(M) is regular. Assume also
that I'g,I’y € £ are subsets of K(M) — and hence its interior. Suppose for
some z €p and y €T, thereis a path L € int K(M) from z to y. Then
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L can be chosen to have the following “nondegeneracy” properties:

(i) Ln K(M) is a finite set;

(ii) if g is a point in LN K(M),
- then ¢ is in the interior of any face containing it;

(i) all faces containing q lie in the same hyperplane.

Proof. If Ty = TI';, by definition, we can construct a path L° within
T'o from z to y. The above are then vacuously true. If I'g#T'y, we can
construct the path L°.from L as follows. We know that L is the image of

some continuous function
f:00,11>%",  f(0)=2z€To, f(1)=y€T.
Since T’y is closed, we have
0 <x=max{f(To)} < 1.

Let ¢ = f(\). Then g € 8Ty. Let B be an open ball in int K(M) around
g € L C int K(M). Since all the facets are closed sets, we may assume that
B is so small that any facet of K(M), of any dimension, intersecting B must

contain ¢. See Figure 3.3 for a picture of the local situation around gq.

Ty is a component so we may construct a path L* from z to ¢ where
L*\q CTy. Let g€ BN(L"\gq). We claim that for each point in B\ K(M)
there is a path in B from that point to § that satisfies the conditions of the
lemma. Clearly, if such a path exists between § and some point in BNTY,
then one exists between § and all points in BNT;. (This does not follow

from what has been set up as it could be that BNT'; is not connected. In
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this case we may temporarily take the I'; as the connected components of
B\ K(M) and all will go through. It will turn out, in the next chapter, that
this precaution is not necessary. However, we do need to know that the path
can be built within B for later reference.) The set of points in B that can be
connected to § by a path satisfying the given conditions is, then, the closure
of the union of some of the BNT;. Call this set §. § is the intersection of '
B with a polyhedral cone with vertex translated to ¢. It is n-dimensional
as BNTg € S. If S# B, then S has a boundary in B. We may then
find a point § € B, in the interior of one of the (n — 1)-dimensional faces
" making up 385, such that the faces of K(M) containing § all lie on the same
" hyperplane and all contain § in their interiors. (These restrictions will remove
a set of points that is (n — 2)-dimensional at most, and we have a set that is
(n —1)-dimensional from which to choose.) A sufficiently small line segment,
I:, with § as midpoint and orthogonal to the (unique) boundary face of S

through ¢, will make a path from some g € int S to some ry € B\ S where
Ln K(M) =3.

The conditions of the lemma are satisfied for this path. Since rg € S, we
have a path to rp from § satisfying the conditions. Combining the paths

gives a path from § to r, € B\ S satisfying the conditions, a contradiction.
Thus B=S.

Now, let
N = max{f—l(f‘.-):BnI‘.-;éﬂ}.

Clearly A\ < N, as L did not end at q. Let

9’ = f(\) eT,.
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Pick a point 7 in BNI'2. There will exist a path, from z to g, from §
to r, and from 7 to ¢’, satisfying the conditions of the lemma. If \' =1,
then ¢’ = y and we are done. If \ < 1, an open ball around ¢’ can be
made small enough to repeat the above arguments, extending the path into
some new component I's. As there are finitely many components, we will
eventually have a path from z to y in int K(M ) that satisfies the lemma’s

conditions.

O

Consider a point ¢ € LN K(M). The previous lemma shows that for
a small enough open ball, B, around ¢, there is a hyperplane H such
that ¢ € BN K(M) = BNH, and BNH splits B into two open hemi-
hyperspheres, contained in, say, I's and I'z respectively. (See Figure 3.4.)

Since ¢ € int K(M), all faces containing ¢ are proper. Suppose that a full

complementary cone, posC(a), contains 'z but not I'3. Hence for some
1 € ., we must have ¢ € posC(a); C H. The previous lemma allows
us to assume that intpos C(a).; bisects R into the aforementioned hemi-
hyperspheres. As pos C(a).; is proper, I; and —M.; lie on opposite sides
of H. Thus posC(a & {{}) contains I'3 but not I';. Since we could have
assumed at the start that pos C(a) contained I's and not I';, we have a
bijective correspondence between complementary cones containing I'z, not
I'3, and complementary cones containing I'3, not I's. So the number of

complementary cones containing I's is the same as the number containing
F3 . Thus

g€l g€T3 = |sol(q, M)| = |sol(g, M)|.

Therefore, if we start at z and follow the path L, we will pass through a
finite sequence of T'; € ¥ where |sol(q, M)| is invariant for all ¢ in the T;.

Hence
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Jsol(z, M)| = |sol(y, M)].

We have been assuming that z,y ¢ K(M). Now suppose we have
y € int K(M) N K(M) . As in the proof of Lemma 3.12, we can find an open
ball B C int K(M), with y € B, so small that BN K(M) is the intersection
of B with the union of finitely many (n — 1)-dimensional finite cones with
vertex translated to y. (See Figure 3.5.) Since y is contained in only full
complementary cones, each cone containing y is associated with exactly one
solution in sol(y, M). Suppose that I'y C posC(a). Then y € posC(a)
and let the associated solution be (w,z). We will show that no other cone

containing I'; has (w,z2) as the associated solution to (y, M).

We may assume that @ = @ as we can always block pivot on M,, to
get the principal transform M. As shown in Chapter 1, the cone structure
is preserved and working with pos C5(@) is equivalent to working with
pos Car(a). Thus (w, z) = (y,0). We may assume that suppw = suppy =
i\ k, where 0 < k < n. Thus a full cone, posC(8), has (y,0) as its
associated solution to (y, M) if and only if 8 € (k). However, for all
B € (k) and for all i € k, we have y € posC(8).;. Hence posC(8); is
a proper face of K(M) as y € int K(M). Therefore, if 8,7 € (k), then
(det Mpg)(det M,,) > 0. As B € (k), we then see that Mz €P. If 8 € (k),
and there is some 0 < § € pos C(8), then pos C(B);; is associated with a
solution to (¥, My3). As My € P and ¥z > 0, there is oniy one such
solution and it is associated with only the positive orthant. Thus 8 = 0. Yet
I'; C intpos C(B) = int R . We may conclude, as claimed, that pos C(a)
is the only complementary cone containing I'y with (w, z) as the associated
solution to (y,0). Hence |sol(y, M)| is at least as large as the number of

complementary cones containing I’y .
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Suppose now that y € posC(e). Thus looking at Figure 3.5 again
we have that some Iy containing y is contained in posC(a). In fact,
‘BNposC(a) is the closure of the union of sets in the form BNT;. Select
two points ¢ € T’y and ¢ € T'y,. Let L be a path in B between ¢ and
g satisfying the conditions of Lemma 3.12. (In the proof we noted that
such a path can be made within B.) Suppose we cross a boundary of
pos C(a) moving along L from ¢ to g. We will leave the cone at some
f;oint interior to a face, say pos C(a).;. This face must be proper, as it
contains a point in int K(M). We then have that I; and —M.; lie on
" opposite sides of spanC(a).;. Let 8 = a & {i}. Thus we enter posC(S)
- when we leave pos C(a). Moreover, L C B so pos C(a).;NB @ implying
y € pos C(a).; = pos C(B).;. Hence the solutions to (y, M) associated with
both pos C(a) and posC(B) are the same, both using only the columns in
pos C(a).;. Thus we will eventually reach a full cone containing I'; such
that the solution to (y, M) it is associated with and the solution to (y, M)
that pos C(a) is associated with are the same. Hence |sol(y, M)| equals the

number of complementa:y cones containing T'; . We have thus shown
THEOREM 3.13 Let M € R"*". If K(M) is regular, and S is a;

connected component of int K(M) , then

$,3€ES = |[sol(q, M)| = [sol(g, M)|.

We get the partial converse to Theorem 3.9

COROLLARY 3.14 Let M € R™**X", If K(M) is regular, and int K(M)
is connected, then M € INS.

a




Example 2.3 shows an INS-matrix for which int K(M) is disconnected.
In fact, there exist points in K(M), for example (1,1)7 and (—1,—1)7,
which can be connected in K(M) only with paths containing the origin. Since
K(M) is a cone, any two of its points can be connected by a path through
the origin, so this particular K(M) is just “barely” connected. However, we

note

THEOREM 3.15 Let M € R*X" n > 1. If no complementary cone is
strongly degenerate, then any two nonzero points in K(M) can be connected

by a path in K(M) not containing the origin.

Proof. Define the map F': R™ — R™ as

F(z) = Z(max(azi, 0) - I; + min(z;,0) - M).

1==1

Thus K(M) = F(R"). Clearly F is continuous. Define the continuous
radial projection P: R"\ {0} — S™! as P(z) = z/||z||, where

§* = {z e R [zl = 1)
is the unit sphere in n-space. Since no complementary cone is strongly

degenerate, F(z) = 0 implies that z = 0. So 0 ¢ F(S™!), hence

PoF :8" ! o 81 {5 a continuous mapping. Furthermore
PoF(S" 1= S""'nK(M).

This and the path connectedness of S™*~! imply that S*~! N K(M) is path

connected. However, any nonzero point in K(M) can be connected by a
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path to S®~ 1N K(M), i.e., the ray through that point from the origin. The

theorem follows.

O

ExampLE 3.16 The matrix

0 1 0
M = 1 0 0
-1 —1 —1

belongs to INS,. However, int K(M) is not connected, and no complemen-
tary cone is strongly degenerate. This example shows that we cannot have a
result similar to the previous one concerning the connectedness of int K(M)
in the weakly degeneracy case. However, in the case of nondegeneracy we

have

THEOREM 3.17 Let M € R*>", If no complementary cone is degener-

ate, then int K(M) is connected.

Proof. Take ¢,3 € int K(M). We can find full complementary cones so
that ¢ € posC(a) and § € posC(8). If a = B, then ¢ and g are path
connected within int posC(a) C int K(M), even though ¢ and § may be
the only points of the path not in int pos C(a).

Suppose a &4 § = {i}. If posC(a); is reflecting, then [I; and
—M., lie on the same side of spanCia);. By Lemma 2.8,
int pos C(a)Nint pos C(B)#®. We can thus build a path in int pos C(a)
from g to a point in this intersection, and then to g through int pos C(8). If
pos C(a).; is proper, then I.; and —M.; lie on opposite sides of span C(a).;.
So

int pos C(a).; C int[pos C{a)U pos C(8)] € int K(M).
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The path can then be constructed from ¢ though intposC(a) to a point
within int pos C(a).;, and from there, through int pos C(8), to §.

In general, if a a8 = {4;,...,ic},let vy = a and for 1 < 3 <k
let vj4+1 = v; & {7;}. Then, posC(y;) and pos C(y;41) are adjacent for
1 < 3 < k; moreover, Yx4+3 = f. This and the previous arguments show
that int K(M) will contain a path from ¢ to g. That is, int K(M) is path

connected.

O

We conclude this chapter with a partial characterization of the class INS.

COROLLARY 3.18 Let M € R"X" and suppose that M has no zero

principal minors. We then have

M€eINS & K(M) is regular.
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CHAPTER 4.
INS-MATRICES: FURTHER RESULTS

4.1 Convexity of the T |

The partition ¥, defined in the last chapter, was seen to be an important
object. We noted in Example 3.7 that a component I" € £ need not be
convex, even if I' € K(M) . The matrix used in the example was a degenerate

matrix, but degeneracy was unneccessary as the matrix

—1 0 -1
M= 0 -1 -1
0 0 —1

is nondegenerate and has, geometrically, the same X as the matrix in

Example 3.7. However, we do have the result

THEOREM 4.1 If M € INSNR*X"  then all T € T contained in K(M)

are convex,
Before starting the proof, we will need the following lemma.
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LEmMA 4.2 If M € R*X™ and I'#intT for some I' € X, then

I' CintT and z € intT\T implies that z is in a degenerate cone.

Proof. T is open and contained in I'. As intT is the largest open set in T,

it follows that I' C intT.

Now z €T \I' = 8I' C K(M). Thus z is contained in the boundary
of some complementary cone, say pos C(a). Suppose pos C(a) is a full cone.

Then either I' C pos C(a), or T'NposC(a) = 0.

In the first case, z € 9[R™ \ posC(a)] € R"\posC(a). Notice
T C posC(a) as posC(a) is closed. Hence R\ posC(e)Nintl = 0, a

contradiction.

In the.second case, z € dposC(a). As posC(a) is full, for all e > 0,
the set B(z,e)NposC(a) is n-dimensional. Now dI' C K(M) is (n —1)-
dimensional at most, so B(z,¢)\T' %0 for all € > 0. Thus z € ®*\T, and

so z ¢ intT, a contradiction.

We have shown that bos C(a) is a degenerate cone, as required.

a

Proof of Theorem 4.1. Suppose there exists a nonconvex I' € K(M) . Then

there exist two points z,y €I' such that the line segment between them,
L={ +(1=Ny:0<2<L1},

is not contained in I'. Thus there must exist a point ¢ € LNArn K(M).
We may assume
g = LN K(M) N B(q,€), (4.1)

for some small ¢ > 0. To see this, notice that, for small ¢ > 0,
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K(M) N B(g,¢€) is the intersection of B(q,€) with a finite collection of finite

cones with vertex ¢ and dimension less than or equal to n — 1. Since T is

open, we may take ez, ¢, > 0 small enough so that

B = B(z,e;) C T and B, = B(y,¢) CT.

We may thus take z to be any point in B, and y to be any point in B,.

This means we may “perturb” z and y, and hence the line segment L, with

n-dimensional “freedom.” We can thus perturb L so that it contains ¢ and

satisfies (4.1). See Figure 4.1.

For the moment assume that q € int K(M). Thus ¢ is not in any de-
generate cone, so we know from the previous lemma that ¢ € TN m"_\_ﬂ .
Thus, for all € > 0, K(M) NB(q,¢) must be (n — 1)-dimensional. Since
we can perturb L with n-dimensional freedom, we may assume that for
g, and some € > 0 small enough, K(M) NB(q,¢) = HNB(q,¢€) for some
hyperplane H, see Figure 4.2, and that any face of any complementary cone
containing ¢ is (n — 1)-dimensional and contains ¢ in its interior. (The.
argument here is similar to several given before. We are selecting from a set
that is (n — 1)-dimensional and eliminating a set that is at most (n — 2)-
dimensional.) Now let posC(a).; be a face containing q. ¢ € int K(M)
implies that this is a proper face, so as.qg € 8T we may assume I' C pos C(a),
for otherwise T' C posC(a & {¢}). But posC(a); C H, so posC(a), and
hence I', lies entirely on one side of H. But L crosses H with z €T on

one side and y €T' on the other. Contradiction.

Now assume ¢ € dK(M) . This implies ¢ € int K(M) . Again, by the
perturbation argument given above and the fact that dint K(M) is a finite
set of (n — 1)-dimensional finite cones, we can assume q is contained in the

interior of some face pos C(a).1 of which L is a transversal. As ¢ is in 8’
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and in dint K(M), there is some full cone, say pos C(a), that has a face in
the affine hull of posC(a).; and contains I'. Thus T is, again, only on one

side of the affine hull of pos C(a).;. Contradiction.
O

As a side result, Lemma 4.2 implies

CoROLLARY 4.3 If M € R*X™ is nondegenerate, then for all ' € &

we have I' = intT.
a

We remark that, even for nondegenerate M € INS, if I' Z K(M) then
T’ may not be convex. For example, in R? if we let M = —I € INS, tﬁen
we get |I| = 2 where one component is int K(M) = int %% and convex,

with the other component being %2 \ ®%  and nonconvex.

Failing to show for nondegenerate M that all the T' € £ are convex,
one might consider showing that some particular I" is convex. With this in
mind, we prove the next theorem before leaving this section. Recall that, by

Theorem 3.8, the number |sol(g, M)| is invariant over ¢ €T for each ' € I.

THEOREM 4.4 Let M € R™*" be nondegenerate. There exists * least

one I'" € L such that forall T €D
|sol(g”, M)| > |sol{g, M)|, forg €T, g€T, (4.2)

and any such I'"" must be convex.

Proof. 1t is clear that at least one I'" exists. As in the proof for Theorem 4.1,
we assume otherwise, and take z,y € I'" such that the line segment between
them, L, contains a point ¢ not in I'". As before, using the nondegeneracy

of M, we may assume ¢ € AT and that there is a hyperplane H , of which
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L is a transversal, such that if ¢ is in any face of any complementary cone,
then ¢ is in the interior of the face, the face is (n — 1)-dimensional, and the
face is contained in H . We also know at least one face of a complementary
cone contains ¢. If a complementary cone, with a face containing ¢, contains
I'*, then, as in the proof of Theorem 4.1, we will have I'* lying entirely on
one side of H. As before, this contradicts the fact that L is a transversal
of H. Thus no complementary cone with a face contained in H can contain
I'* . By nondegeneracy and the fact that some face does contain g and hence
isin H, we know some full complementary conec does have a face lying in H .
That cone must contain I', where I' is the other component in ¥ that has ¢
on its boundary. (Since for ¢ > 0 small enough we know that B{q, ¢)\ K(M)
is two hemi-hyperspheres, one on each side of H, we see that at most two
components in ¥ contain ¢ on their boundaries. We know ¢ € aI'* and we
have just seen that another component must also have ¢ on its boundary.)
Hence, every complementary cone containing I'* also contains I', but some
cone containing T' does not contain I'*. Thus, with ¢ €T and ¢" €T'", we

have |sol(g, M)| > |sol(¢", M)|. This contradicts (4.2).
O

4.2 The Number of Solutions

In discussing the class INS an important question to ask is for what
values of k is INS; empty? We know INS; = U is certainly nonempty. It
can be easily seen that for all positive integers n, —I € R"*" is in INSzn.
What about values of k& other than the powers of two? We will attempt to

give evidence suggesting that INS, = ¢ if k is not a power of two. We begin
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by proving

THEOREM 4.5 Suppose M € INS, AR™X™ | If there exists some point

‘in 0K(M) that is not contained in a strongly degenerate cone, then k is

even.

Proof. Let ¢ € 8K(M) be contained only in full or weakly degenerate
cones. By dimensional arguments similar to ones given previously, we may
assume there is a hyperplane H such that if ¢ is contained in a face of a

complementary cone, then that face is (n — 1)-dimensional with ¢ in its

" interior, and the face is contained in H. We can then take an ¢ > 0 so

- small that B(q,e)Nint K(M) C T for some particular ' € £. See Figure

4.3. Any full complementary cone containing ¢ must contain T", and likewise
any complementéry cone containing I' must contain ¢. Since therg are no
strongly degenerate cones containing ¢, by Lemma 3.2 of Saigal (1972a) it
follows that ¢ is contained in an even number of full cones. Thus for any

g €T, we have |sol(g, M)| is even, whence k is even.

O

COROLLARY 4.6 Suppose M € INS,NR"*X™_ If there are no strongly

degenerate cones in K(M), then k is even, or M € P.
O

We now reconsider the proof of Theorem 4.5. This time we will allow
strongly degenerate cones. If ¢ is contained in a degenerate face, then
|sol(q, M)] = oo. Otherwise ¢ is contained only in reflecting faces, as
g € dK(M). Thus q is contained only in full cones. Let (w, 2) € sol(q, M)
be the solution associated with a full cone posC(a) that contains g, and

so there is an ¢ € 7 such that ¢ € intposC(a);. Thus z,\ () > 0,
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wa\{i} > 0 and 2 = w,; = '. Hence, (w, z) is also the solution associated
with the full cone posC(a a {i}), and is associated with no other full cone.
Thus, as we had ¢ contained in_k full cones, it follows that |sol(g, M)| = §.
In any case, {sol(gq, M)| # k. This reasoning, along with Theorem 3.4, proves

the following assertion which was mentioned at the beginning of Chapter 3.

THEOREM 4.7

P = U U {ME?Rnxn:Isol(q,M)lzk, for all ¢ € K(M) }

k€Z+ ﬂEz-'-
O .

At the start of this section it was suggested that INS, = @ if & is not

a power of two. As will be shown later, this would follow from

CONJECTURE 4.8 Let M € INS, NR"¥"_ If K(M) has no reflecting
faces, then £k < 2.

The author has examined many INS-matrices, and studied their general
structure in the case where all boundary faces are degenerate. No coun-
terexample to Conjecture 4.8 has been found. To obtain some feeling for
why the conjecture should be true, let us consider trying to construct K(M)
for an INS, matrix, k¥ > 3, with all boundary faces degenerate. Clearly
dint K(M) #0, otherwise M € P. Let H be a hyperplane, let
C = HNdint K(M) , and suppose that dim C = n—1. Since only degener-
ate faces are in IK(M), each such face acts as the “base” of at most one full
complementary cone. We would then find that every point in C that is not
in a m-dimensional facet of a complementary cone, where m < n — 2, i.e.,

“almost all” the points in C', must be contained in exactly k degeneratc faces
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which act as bases for k full complementary cones. In building K(M) we find

there is a “tradeofl” in our placement of the column vectors of [ 1| —M |.
The more we place in C, the more degenerate faces we will have to form
bases of full cones, which can be used for this multiple covering of C. The
more we place outside of C, the more full cones we can actually form on
these degenerate faces. There are other tradeoffs in the construction. For
instance, the more boundary hyperplanes H that &int K(M) has, i.e., the
more possible C’s that exist, the more we must worry about putting the
column vectors of [ I | —M ] on the boundary of each C to “spread them
around” to the diffrrent C’s. The fewer the number of boundary hyper-
planes, the more likely the C’s will contain lower dimensional linear spaces
(linealities), 12quiring many degenerate faces for our multiple coverings of
the C's, and the previously mentioned tradeoff becomes more critical. ‘With
these and other requirements on the structure of K{M), including the way
in which the columns vectors of [ I | —M | form the complementary cones,
it seems certain that the 2n column vectors of [ I | —M | would not permit

k to exceed two. If this is so, we have

TueoreEM 4.9 If M € INS NR">™ and Conjecture 4.8 is true, then k

is a power of two.

Proof. The proof uses induction on n. If n = 1, then there are at most
two complementary cones. Thus & < 2 and the theorem is true. Suppose
the theorem is true for n — 1. If no faces are reflecting, then k < 2 by

Conjecture 4.8 and the theorem holds.

Thus suppose posC(a); is a reflecting face. Then, posC(a); C
dint K(M) . Let H be the hyperplane span C(a).;. Let
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S=|J {posC(B)s: posC(B)s C H}.

pE(R)
SEW

“pos C(B).; isin S if and only if the columns of C(B8).; are all in S. (Notice
that we use -i here as both I; and —M,; are on the same side of H, but
not in H.) We can now think of the vectors of I; and —M; as forming
an (n — 1)-dimensional LCP. (For notation, say that the matrix associated

with this new LCP is M .) The correspondence is as follows:
H takes the place of R 1;
S takes the place of K(M);

pos C(a).; takes the place of the identity matrix as pos C(a).; is a known

full cone in H ;

if pos C(&).; € H, then '—M.j is represented by pos C(&).; , otherwise
——M.,- is represented by the zero vector. (Here we index on %, so we

have j €1.)

We will refer to this LCP in H as the reduced LCP. We claim that K(M)

is regular.

Suppose ¢ € int S is contained in a reflecting face of the reduced LCP.
By dimensional arguments similar to earlier ones, we may assume there
is an (n — 2)-dimensional hyperplane H C H such that if a face of a
complementary cone in the reduced LCP contains ¢, that face is (n — 2)-
dimensional, contains q in its interior, and is contained in H. Thus for
€ > 0 small enough, B(g,e)NH is a hypersphere divided into two hemi-
hyperspheres by H, with one hémi-hypersphere contained in AI' and the
other contained in 8T/. Here I' and I are in the X of the original LCP.
See Figure 4.4. Let pos C(a),ﬁ be a reflecting face in S containing ¢q. Thus
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both full cones of the reduced LCP which contain that face lie on the same
side of H in H. We may assume they both contain aT'NH , and both
intersect 8T' N H only on H. But then, as both I; and —M.j liein H on
the same side as dT'N H , no full cone of S can contain 3" N H and without
containing 8T'N H . Thus more cones of the reduced LCP contain 8T NH

than contain 8TV H. But each full cone of the reduced LCP is a face for

exactly two cones of the original LCP. (The cones you get by adding in I;
and —M.;, respectively, as another generator of the cone.) Also, each full
cone of the original LCP with a face in H has that face as a full cone of the
reduced LCP. Hence as ¢ € int S, we have some full cone of S containing
OI"NH and so if z €T and y € IV then |[sol(z, M)| > |sol(y, M)| > 0.
This contradicts the assumption that M € INS . '

Now suppose ¢ € int S is contained in a degenerate cone, say pos C g (a),

of the reduced LCP, where ¢ ¢ a € (%®). If all the columns in C M(a) are from
the original LCP, i.e., none of them are zero columns made, as mentioned
before, because the associated —M.; was not i~ H, then pos[ I; | Cg(a) ]
is a degenerate cone of the original LCP. What’s more, as ¢ € int S, this
degenerate cone contains points in the interior of the convex hull of S and
I;, which, in turn, is contained in K(M). This is impossible since M € INS.
We thus assume C g (a) contains columns which were made zero, as described
before. Now substitute for all but one of these columns that were made zero,
say all but —M.;, the associated complementary column from Cg(0). Let
this new matrix be Cy,(6), and notice that ¢ € posCy(B). If C (Ba{7})
is a degenerate cone in the reduced LCP, then as none of its columns were
made zero in the way initially described, we would be back to the previous
case. Thus assume that posC (84 {7 }) is a full cone in the reduced LCP,

and thus dim(pos C(8).3] = n— 2. We can now use the same argument as
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in the case when we assumed ¢ was in a reflecting face of S. However, here
we use pos Cy(B).; instead of pos C(a),é . Also, there is one full cone, not
two, of the reduced LCP with posC;(B).; as a face, but we still have this
one cone containing AT NH - #nd not containing 8T N H - so the argument

remains valid. We conclude that S = K(M) is regular, as claimed.

Let g be in a connected component of the interior of S. By familiar
dimensional arguments, we may assume that if a complementary cone of
the reduced LCP contains ¢, then it is a full cone containing ¢ in its
interior. Thus, for an ¢ > 0 small enough, B(g,e)Nint K(M) C T for
some particular I' € ¥. (See Figure 4.3 again.) Since ¢ € dK(M), the
complementary cones of the reduced LCP that contain ¢ are reflecting faces
of the original LCP. (They can’t be degenerate faces as both I.; and —M,;
are not in H'.) Thus each cone of the reduced problem that contains ¢ is the
face of two distinct full cones of the original problem, and these two cones
will contain I'. Also, any cone containing I' must contain q. As we've seen
before, the number of cones containing I' must be k, hence the number of
full cones in the reduced LCP containing ¢ must be §. Since ¢ could be in
any connected component of int S, using Theorem 3.13 we find Me INSk/2 -
By induction on the dimension of the LCP we see that § is a power of two.

Thus k is a power of two. O

The previous theorem makes it seem almost certain that |

©0
INS = | J INS,».
p=0

However, there is a large class of matrices for which we can show the rcsult

of the theorem holds without recourse to Conjecture 4.8. We see this in the
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following

THEOREM 4.10 Let M.€ INS;NR"*". Suppose that for all a € (%)
“we have det C(a) = 0 if and only if C(a); = 0 for some i € %. It is then

the case that k is a power of two.

Proof. The point here is to show that the proof of Theorem 4.9 goes through -

without using Conjecture 4.8 and with only minor changes — when we restrict

ourselves to the matrices described in the statement of Theorem 4.10. (We

use here the notation of the proof of Theorem 4.9.)

In the case where we have a reflecting face, the proof is the same. The
only thing needing commentary is the induction step where we must now show
the reduced LCP satisfies the hypothesis of this theorem. Suppose pos Cj ()
is a degenerate cone in S, where i ¢ a € (7). Assume no column of Cg(a)

is zero. Thus all the columns in Cj(a) come from the original LCP, i.e.,

are not “artifical” zero columns as described before, and so posC(a) is a

degenerate cone of the original LCP with no zero columns. This contradicts
the fact that the original problem satisfied the hypothesis of tLe theorem.
Hence the reduced problem satisfies the hypothesis of the theorem.

Now suppose there are no reflecting faces. If M € Q, then M € P
and we're done. Otherwise dint K(M) #0 and so must be made up of
degenerate cones. Thus M must have at least one column that is all zeros,

say M,; = 0. Thus
{ge R :qi=0} C dint K(M),

and we can let

H={qeR":q;=0}.
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We can now go through with the proof of Theorem 4.9 for the case of a
reflecting face. The reduced LCP is made in the same way. I; represents
C(9) taking the place of the.identity matrix for the reduced LCP. For
J€1,if —M.,; € H then —M.; represents —M._,-, otherwise -—M.j =0.
The difference is that each full cone in § is the face of one full cone in the
original LCP - which will contain I; — and for each full cone of the original .
LCP with a face in H, that face will be a full cone in S. We will finally get
the reduced LCP in INS;, which, by induction, will mean k is a power of
two. (The reduced LCP satisfies the hypothesis of this theorem by the same
reasoning as given in the second paragraph of this proof.) We thus arrive at

the same conclusion as in Theorem 4.9. -

We leave this section with the following immediate corollary to the last

theorem.

COROLLARY 4.11 If M € INS;NR™*X™ is nondegenerate, then k is a

power of two.
a

4.3 The Structure of K(M) and dK(M)

The purpose of this section is to build a link between the combinatorial
and geometric representations of K(M) for nondegenerate INS-matrices. The
main result is to show K(M) and 8K(M) can be divided into several
disjoint pseudomanifolds. For this purpose we review some of the basic

definitions related to pseudomanifolds. For a more detailed discussion of
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these topological-combinatorial constructs discussion see, for example, Eaves

(1972, 1976), Freund (1980), and Spanier (1966).

DEeFINITION 4.12 Let V be a finite, non-empty set of elements (vertices).
We say that a collection P of subsets of V is an n-dimensional pseudo-

manifold if and only if

(i) S € P implies that |S] = n + 1. The subsets S are rcferred to as

n-simplezes.

(ii) F CV and |F| =n implies that F is a subset of at most two elements
in P. (F is an (n — 1) -simplez.)

(iii) For every pair S, S € P, there is a finite sequence S = Sy, S1,...,Sm =
S of elements of P such that [S;NS;y1| =n,for 0<i<m.

The boundary, 9P, of the pseudomanifold P is the collection of subsets

F C V which have n elements and are contained in exactly one element of
P.

DEFINITION 4.13 Let S be a simplex of the n-dimensional pseudo-
manifold P. Let (sg,s1,...,8,) be some fixed ordering of the elements of
S . Any ordering of these elements, say (s;,,3,,,.-.,35,), is then defined to be
a positive (negative) orientation if and only if the permutation (j, j1,...,n)
is even (odd). In this way we say we have oriented the simplex S. We say
two distinct simplexes in P are adjacent if they have n elements in com-
mon. Thus, if S and S are adjacent, we can write S = (s,81,...,3,) and
S = (3,81,...,8,). If these particular orderings for S and S are given
different signs by the orientations on S and S, then we say S and S are
coherently oriented. Finally, we say P is orientable if we can specify an

orientation for all § € P such that any two adjacent simplexes are coherently
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oriented.

ExaMmPLE 4.14 For any matrix M € R"*", K(M) can be viewed as
the geometric representation of an orientable (n — 1)-dimensional pscudo-
manifold without boundary, i.e., the boundary is an empty set. (Notice the
combinatorial dimension is one less than the geometric dimension.) Let V
be the set of column vectors in the matrix [ I | —M |. The elements of
the pseudomanifold are the sets of column vectors of the complementary
matrices. The geometric representation of C(a).s is then posC(a).s for
a,B € (7). For any a € (W), let the orientation of (C(a).1,...,C(a).,) be
determined by the sign of (—1)!%/. It is not hard to see this will orient the

pseudomanifold.

Doverspike and Lemke (1981) showed that for a large class of non-
degenerate matrices M € Qo , it is possible to find a collection of complemen-
tary cones whose union is K(M), and forms a pseudomanifold P in such a
way that the geometric union of the faces in 9P is d K(M) . Furthermore,
there will be exactly one other collection, disjoint from the first, of com-
plementary cones whose union is also K(M), which also is a pseudomanifold
whose boundary is dP. As we will be building somewhat similar pseudo-
manifolds from INS-matrices, eventually to prove Theorem 4.18 — which the
reader may wish to glance at now - it will be useful at this point to go over
the proof of the Doverspike-Lemke result before proceeding. The basic idea
of the proof is explained in the following paragraph. (The f ull details of the

proof would require many pages and are omitted.)

Consider the geometric structure of K(M). For each 1-dimensional facet
of K(M) we find a column from [ I | —M | whose “pos” spans it. (We have

our choice of any column vector which is in the facet when there is more than




one.) In this way we build up (trivial) pseudomanifolds for the 1-dimensional
facets of K(M). From here on, we assume we have built up pseudomanifolds
for the r-dimensional facets of K(M), 1 < r < n. The boundary of
any (r + 1)-dimensional facet is the union of r-dimensional facets. We can
take the union of the pseudomanifolds of these r-dimensional facets as a
boundaryless pseudomanifold over the geometric boundary of our selected
(r + 1)-dimensional facet. (They will “fit” together as their boundaries were
made from the same pseudomanifolds on the (r —1)-dimensional facets.) We
then give a construction to show there will be exactly two pseudomanifolds,
as previously described, on the (r 4+ 1)-dimensional facet whose boundary
pseudomanifold is the pseudomanifold we pieced together on the geometric
boundary of the (r+1)-dimensional facet. We continue this until r4-1 =mn,

at which point we have the result.

The concept we wish to use from this is the fa.mily of pseudomanifolds on

the r-dimensional facets of K(M), with the r-dimensional pseudomanifolds
forming the boundaries of the (r+1)-dimensional pseudomanifolds. However,
we will be working from the higher dimensions to the lower dimensions,
whereas Doverspike and Lemke do the opposite. Notice we are able to start
our constructions since K(M) is regular, which implies that for an}" face in

K(M), say pos C(a).;, we have
dim[pos C(a)sNAK(M)]=n—1 = posC(a); C IK(M).

The following lemma will prove useful.

LeEMMA 4.15 Let M € INSNR"*X™ be nondegenerate. It is then the
case that the r-dimensional facets of K(M) are regular. (That is, if the
(r—1)-dimensional cone pos C(a).s, where a, 8 € (%) and || = r—1, is the

common face of two r-dimensional complementary cones in an r -dimensional
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facet of K(M), then it is either a boundary face of the facet, or it is a proper
face. If the two r-dimensional cones are not in the same r-dimensional
facet of K(M) then, clearly, pos C(a).s is on the common boundary of both
r -dimensional facets which confain the r-dimensional cones, so we need not

worry about this case.)

Proof. This is easily seen by reverse induction. It is true for dimension
n, as K(M) is regular by assumption. Suppose it is true for dimension
r+4+1, 1 < r < n. Suppose that it fails in dimension r. We may assume
some ¢ in the interior of an r-dimensional facet is contained in a reflecting
(r — 1)-dimensional face, pos C(a), —g, which is the common face of the

two cones pos{ C(a)—; | —M.. ] and pos[ C(a);— | I, ]| contained

in the 7-dimensional facet. (As M is nondegenerate,A there cannot be any
degenerate faces here.) Some (r + 1)-dimensional facet will contain this
r-dimensional facet in its boundary, and thus must contain some column vec-
tor from [I | —M ] which is not in [I.;, —M3]. Say it contains I.,. As the
r -dimensional complemenpary cones covering the r-dimensional facet must
be generated from column vectors of [I;, —M;] — due to nondegeneracy of
M - then the interior of the cone pos| ¢ | I., ] is contained in the interior of
the (r+1)-dimensional facet. Hence the reflecting face, pos{ C(a) ;=5 | I |,
which is the common face between the cones pos| C(a);— | I.r | In ] and
pos{ C(a);—; | —M., | L., ], contains points in the interior of the (r 4 1)-
dimensional facet, contradicting the regularity of that facet. This completes
the induction. Thus all the 7-dimensional facets are regular, for 1 < r < n.

a

We can now start building up our pseudomanifolds.
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DEeFINITION 4.16 For any complementary cone, C, in K(M) define the

pseudomanifold P = P(C) to be C and all complementary cones C" for

‘which there exists a finite sequence of complementary cones C = Cy,Cy,...,

Cm = C*, where, for 1 < i < m, C; and C;; are adjacent cones whose

common face is proper.

Let M € INS;NR"**X™ be a given nondegenerate matrix. Thus by -

Theorem 3.17 we know that int K(M) is connected. Fix some C C K(M).
Let P = P(C). Let ¢ and § be two points in int K(M) such that if a

~ complementary cone contains one of these points, then it contains that point

in its interior, i.e., q,§ € K(M) \ K(M). We can now use Lemma 3.12

to get a path L from ¢ to g satisfying the conditions of Lemma 3.12.
Suppose s members of P contain g. Now move along L from ¢ to g.
When L crosses a face of a complementary cone, that face must be proper

as L C int K(M) and K(M) is regular. Thus L leaves one complementary

cone and enter another one. If the first cone was a member of P, then

the second cone will also be. Hence, for points in L\ K(M), the number

of members of P that contain any given point is independent of the point

selected. Thus g is contained in s members of P, as was ¢. Thus every

point in int K(M) \ K(M) is contained in s members of P.

Before continuing on, let us digress momentarily to point out a simple
fact about P. Suppose that C* is a cone in P. By definition we have
the sequence of cones, C = C;,Cy,...,Cm = C", adjacent on proper
faces. Suppose €1 = posC(a) and C2 = posC(#). By the definition of
a proper face, we have (det M,q)(det Mgg) > 0. If we have C* = pos C(7),
then it is easily seen that continuing the reasoning in the last sentence
along the sequence of cones C1,Ci,...,Cyn will lead us to conclude

(det Moo )(det My,) > 0. Hence, the sign of the determinant of the prin-
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cipal submatrix of M associated with every member of P is invariant over
P. This fact will be useful momentarily. For notational purposes, we say
a full complementary cone posC(a) is positive (negative) if det Moo > 0
(det Mpa < 0).

Returning to the main discussion, we have shown every point in
K(M)\ K(M) = int K(M)\ K(M) is contained in s members of P, where,
clearly, s > 1. Since these complementary cones are closed, and by non-
degeneracy K(M) = int K(M) \ K(M), it follows that the geometric union
of the members of P is K(M).

Now, if pos C(a).; is a face of exactly one member of P, i.e, is in P,
then it must be in dK(M) . For if it contains a point in int K(M), then it
must be a proper face, which would imply either both or neither of the cones
containing it are in P. Hence the geometric union of the members of 9P -

must be contained in dK(M).

Let ¢ € dK(M) be such that if any complementary cone contains it,
the cone contains it in the interior of one of its faces, and that face must be
contained in d K(M) . (This, as usual, allows ¢ to be “almost all” the points
in 35 .) Hence, for € > 0 small enough, any point in

B(g,e)nint K(M) C K(M) \ K(M) (4.3)

will be in the same complementary cones as g. As the points in (4.3) are
contained in s members of P, it follows that ¢ is contained in s members
of P. Suppose that posC(a) € P contains g in its face posC(a).;. Let
B = a a{i}, thus pos C(B) is the one other complementary cone with
pos C(a).; as a face. The face cannot be proper as it is in d K(M) . Thus the
face is reflecting, and so (det Mm)(dét Mgg) < 0. Since posC(a) € P, the
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digression above shows that pos C(8) ¢ P. Hence, any face of a complemen-
tary cone in dK(M) is a face of at most one cone in P. Thus q isin s

members of OP.

In the previous paragraph we showed that any cone pos C{a).5, where
|B] = n—1, is contained in at most one member of P. We now assume that

this proper holds for lower dimensional cones.

AssuMPTION 4.17 Let M € INSNR"X"™ be nondegenerate, and let C
be any complementary cone in K(M). Let F' be any r-dimensional facet of
K(M), 1 <r < n, and posC(a).s C dK(M), be any cone in JF where
a,fB € (7), posC(a) € P(C), and |8] = r — 1. Then there exists at most
one 7 € (%) with |y| = r such that, posC(a)., C F' and 8 C 7.

(This assumption is essentially the “consistency” assumption used in the

previously cited work of Doverspike and Lemke.)
We can now state the main theorem of this section.

THEOREM 4.18 Let M € INSx NR™X™ be nondegenerate. If Assump-
tion 4.17 holds, then the complementary cones of K(M) can be partitioned
into k disjoint collections where each collection is an orientable (n — 1)-
dimensional pseudomanifold by the representation described in Example 4.14.
Furthermore if P is one of these pseudomanifolds, then the geometric union
of the cones in P equals K(M). Also, if posC(a),posC(B) € P, then
int pos C{a)Nint pos C(8) = @. (In this way each pseudomanifold partitions
K(M).) In additioh, the (n — 1)-faces making up the boundary of P, call it
8P, also have disjoint interiors and their union is geometrically dK(M) . (It
is known that dP will be an orientable (n — 1)-dimensional pseudomanifold

without boundary.)
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Proof. Most of the work has been already done. We will use rcverse
induction. Suppose by induction we have a sequence of facets of K(M), say
FryFry1,...,Fn_y1, and dimF; = ¢ for r < 1 < n. In addition, suppose
for each F; there is a collection, P;, of ¢-dimensional facets of members
of P = P(C), each facet being in F;, such that for each ¢ € F; which is
not contained in any (i — 1)-dimensional facet of any complementary cone,

(which is “almost all” of F;,) there are exactly s members of P; containing

q.

We have already shown we may start the induction by taking F,__; as

any (n — 1)-dimensional facet of K(M), and selecting as P, _; all those
| faces of members of P that lie in F,,_;. Now suppose we are at the general
induction step. Take as F,_; any boundary facet of F),. For any q € F,__y
that is not contained in any (r — 2)-dimensional facet of any complementary
cone there is an € > 0 small enough so that each member of P, either
contains or is disjoint from B(g,€)NF,. By induction, for small ¢ > 0, we
have each point in B(q, €) Nint F, must be in exactly s members of P, , thus
g is in s members of P,. By Assumption 4.17, each (r — 1)-dimensional
facet, of a complementary cone, contained in F,_; must be the face of no
more than one member of P,. Hence, if we define P,_; as all the faces of
members of P, contained in F,_;, the point ¢ is contained in exactly s
members of P,__;. Noticing that the members of P, must be facets of

members of P completes the induction.

The only “catch” in the induction is where we assume that F, has
a boundary facet. Suppose it doesn’t, and hence F, is an r-dimensional
subspace. By the nondegeneracy of M, we may assume I, and —M,
are not in F,, for r < ¢ < n. Also, notice F, must be covered by the

r-dimensional facets of complementary cones that are in F,. If there is
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some column vector of [ I; | —M; ] that is not in F,, say I, then every
r-dimensional facet, of a complementary cone, that #s in F, must contain
—M.; and so by nondegeneracy must not contain M. This contradicts
the fact that F. is covered. Thus F, contains all the column vectors of
[ Iz | —M3]. We can view F, as R", and [ I; | —M5 | as defining a
LCP, where the matrix of the LCP is M, = —Ms. We know M, € Q.
By Lemma 4.15 K(M,) is regular so, by Theorem 3.18, M € INS. Hence
M,€P. Thus s=1.

Now suppose that we can always continue the induction down to Fj,
no matter what choices we make along the way. By nondegenracy, F}
can contain at most two column vectors from [I| —M ]. If it contains
only one such vector then we have s = 1 as before. If it contains two
such vectors then they are I; and —M.,; for some ¢ € . (In this case
s = 2.) Hence —M.; = \I; for some X\ > 0. As the.boundary of K(M)
contained no lineality (no linear subspace), there must be a minimum of n
1-dimensional facets. Henée, for some i € 7, each such facet must containl
—M,; and I;. Each facet must be associated with a different 7. Thus M
is a diagonal matrix with negative diagonal entries. It is easily seen that
for each complementary cone C, we have P(C) = {C}. Hence s =1,a

contradiction.

In all cases we have have s = 1. Thus any two cones in P must have
disjoint interiors, otherwise the intersection would be n-dimensional which
would mean some of the points in the intersection are in K(M) \ K(M)
and would have to be in only one member of P. The same can be said for
the members of dP. Since any point in K(M) \ K(M) is contained in
k complementary cones, as M € INS,, and each complementary cone C

is contained in some pseudomanifold P, for example P(C), then the com-
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plementary cones can be partitioned into k, clearly disjoint, collections with
each collection forming a pseudomanifold. Each pseudomanifold, P(C), can
be oriented, as in Example 4.14, by giving the ordering (C(a).a,...,C(a).n)
of posC(a) the sign (—1)!%/. This induces orientations for the boundary

pseudomanifolds. See, for example, Freund (1980).
- a

As a final remark, it should be mentioned that the boundary pseudo-

manifolds need not be distinct. For example, Figure 4.5 shows K(M) for

—1 0
we[ 0]
0 —1

In this case M € INS,, and the four pseudomanifolds are the four com-

plementary cones. Each has a different boundary pseudomanifold. Figure 4.6
shows K(M) for
-1 1
M= [ ] .
1 1

Here M € INS;, and the two pseudomanifolds are {posC(#), posC({2})}
and {posC({1}),posC(2)}. These both have the pseudomanifold {pos I,
pos —M.; } as boundary.

4.4 A Simple Class of INS-matrices

The relation between INS-matrices and other matrix classes will be dis-
cussed in Chapter 5, however, it seems appropriate at this point to introduce

a simple subclass of INS. So saying, we have
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DEFINITION 4.19 We say that a matrix A is in the class GNI (Gener-
alized Negative Identity) if and only if

Ae |J {(MeR™ " :|supp M| < 1, forall i €7},
n€Z 4y : .

i.e., each column of the matrix contains at most one non-zero entry, and, if

it exists, this non-zero entry is negative.

Suppose M € GNI and a € (®). If posC(a) is a full cone then
. posC(a) = R7.. Otherwise, posC(a) C OR%Y . Thus no face of any
complementary cone intersects the interior of K(M) = R% . Accordingly,
| int K(M) = int R%_ is itself one of the connected components in %. So, by
Theorem 3.8, .
GNI C INS.

GNI-matrices satisfy the conclusion of the theorems of Section 4.2, and
the proof sheds light on the combinatorial aspect of the subject. In fact,
the theorem essentially follows from the next lemma which is an interesting

combinatorial result by itself.

LEMMA 4.20 Suppose we are given n boxes, labelled 1,2,...,n, and
2n balls, labelled 1,2,...,n,1,2,...,7 . Suppose also that, for all i € 7,
ball 7 is in box 7, whereas ball 7 may be in any one, or none, of the boxes.
Say that (l1,la,...,1,) is a listif for all s € @, I; equals 7 or j for some
j € @, and ball /; is contained in box i. Say that a list is proper if for all
i+ € 7 there exists a j € 7 such that {; € {4,7} . Then the number of proper

lists is a power of two.

Proof. This will be by induction on n. If n =,1, the number of proper

lists is 2 or 1 depending on whether ball 1 is, respectively, in or not in box 1.
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The lemma is true in this case.

Assume the lemma is true for 1,...,n — 1. We will show it true for n.
Suppose some bail is in no box. We may assume it is ball i. Then any proper
list (l,02,...,0n) has l, = n. Notice that (I1,l2,...,ln—1) is a proper
list, and any such proper list can be extended to a complete proper list by .
adjoining I, = n. Also the distribution of the balls 1,...,n—1,1,...,n —1
in the boxes 1,...,n — 1 satisfies the conditions of the lemma. Thus by
induction the number of proper lists (I;,...,l,—1) is a power of two, and

this equals the number of complete proper lists (Iy,...,1,).

Assume all the balls 1,...,7 are each in some box. Suppose ball 7 is
in box 1. Aga.in, we may assume ¢ = n. Then, as above, any proper list
(14, ..,l,,;l) can be made into a complete proper list by adjoining either
l, = n or by adding in [, = 7. (Notice that either is possible.) Also, any -
proper list (I3,...,1,) will have I, =n or I, =7, hence 1y, -eyln—1) is
a proper list. As above, we may use induction to show that the number of
proper lists (Iy,...,ln—1) is a power of two. Thus we have twice that number

of complete proper lists. This is still a power of two.

Now suppose, for all 7 € 77, that we have 7 in some box, but not box 1.
Let 4;,42,13,... beasequence defined by letting #; = 1 and saying that ball
i; is in box ;1 for all § € Z4 . Then the sequence must clearly repeat a
number at some point, say 1; = %x, such that j < k, and 4;,4;41,...,%k—1
are all distinct. We may assume that 5 = 1, that 3 < k < n <41, and the
sequence at the end of the last sentence is 1,2,...,k — 1. Let ({3,...,{s)
be a proper list. If I; = 1, then as ball k ~1 is in box 1, we need to have
le—1 = k—1. As ball k=2 isin box k—1, we need to have I, _o = k—2.
Continuing in this fashion we find that (I;,...,lk—;) is (1,...,k—1). If
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l; #1, then we need I3 = 1. As I3 7 2, we need that I3 = 2. Continuing
in this fashion we have that (Iy,...,lk—) is (k—1,1,2,...,k— 2). Thus
we must have that (11,...,1s) equals (1,...,k—1) or (k; 1,1,...,k— 2).
Notice that cither one of these fwo will do, since having either one of these
begin the complete proper list will force the rest of the proper list, (I, ..., ),
to be selected from the set {k, .o,nk, ...,f}. Hence given an “énding”
to the proper list that works with either of the previous two “béginnings,”
the “ending” will work with both of the “beginnings.” Furthermore, we
see the “ending” is just a proper list for the boxes k,...,n using balls
k,...,n,k,...,#, and any such proper list will do. By induction, the number
of such proper lists for the “ending” is a power of two. Since there are two
possible “beginnings,” the number of complete proper lists is also a power of

two. This completes the induction, and the lemma follows.

a

The above lemma translates almost immediately into the

THEOREM 4.21

o0
GNI C | INSa.
=0

Proof. Let M € GNINR™*™. .With reference to Lemma 4.20, ball s
corresponding to I; and ball 7 corresponding to —M.; for 1 € . We say a
ball is in box 4 if and only if the i** component of the corresponding vector is
nonzero. Thus there is a bijective correspondence between full complementary
cones and proper lists, where the elements of a proper list correspond to the
columns of a nondegenerate complementary matrix. Each of these full cones

is equal to R} = K(M), and as Lemma 4.20 now tells us the number of
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such cones is a power of two, we have M € INS3, for some nonnegative

integer p.

D

It seems bothersome to require that the nonzero entries in a GNI-matrix
be negative. It would be preferable to work with the following class of

matrices.

DEFINITION 4.22 We say that a matrix A is in the class GI if and only
if
A€ U {MeR*"™":|suppM,;| < 1,forallien},
neZ4

i.e., each column of the matrix contains at most one non-zero entry.

Unfortunately, as seen at the end of Section 2.1, the matrix
L
1 0
is not INS, but is in GI. See Figure 2.3. Thus GI & INS. However, it.
is “close” enough to warrant investigation, and so we look at the following
combinatorial lemma which is an extension of Lemma 4.20. (The proofs are
almost identical so the proof of Lemma 4.23 will be given in less detail than

necessary, but familiarity with the reasoning in the proof of Lemma 4.20 will

be assumed.)

LEMMA 4.23 Suppose we are given 2n boxes which are labelled 1,2,...,
n,1,2,...,n’, and 2n balls, labelled 1,2,...,n,1,2,...,7. Suppose also
that, for all 4+ € @, ball ¢ is in box ¢, but ball 1 can be in any one box, or
no box at all. Say that (by,ba,...,b,) is a boz list if, for each i € &, b; is
either 7 or 1’. Furthermore, given a box list, we s'ay that (I1,02,...,1,) isa

list for the box list if, for each ¢ € ®, !; equals j or j for some j € 7, and
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l; is contained in box b;. Say that a list is proper if, for all + € 71, there is a
J €7 such that I; € {1,7}. Then, there exists a nonnegative integer p such
that the number of proper lists. associated with any box list is either zero or

2P,

Proof. We will use induction on 7. For n = 1 either 1 is in no box (box 1), .
in which case box 1 has one (two) proper list(s) and box 1’ has none, else 1
is in box 1’, in which case both boxes have one proper list. The lemma holds

here.

Now assume the lemma holds for 1,...,n — 1. We will show it true for
n. Suppose some ball, say 7, is in no box. Then any box list with at least
one proper list must have b, = n. Also, any proper list must have [, = n.
Similar to before, we find that the number of proper lists that are associated
with box lists of the form (by,...,bn,—_1,n) equals the number of proper lists -
(l1y...,In—1) for the associated box lists (by,...,bn_1) when we consider
the embedded smaller problem for n — 1. The lemma then holds here by

induction.

Assume all the balls 1,2,...,7 are in some box. If for some 3, say
1 = n, we have ball 7 in box n, then we will have a situation similar to the
above. Any box list will have no proper lists if b, = n’, and the number of
proper lists of box lists in the form (by,...,bn-.1,n) equals twice the number
of proper lists (l1,...,ln—1) for the box lists (by,...,b,—1) when we consider
the smaller embedded problem. (We would just add on {, = n and !, =7
to get the two complete proper lists from the box lists of the smaller problem.)

The lemma then holds here by induction.

If we had # in box =’ in the previous paragraph, then each box list

(b1,...,bn) would have the same number of proper lists as (by,...,b,—;) in
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the smaller embedded problem. The reasoning is the same as before, only
now we complete the smaller proper lists by adding on l, = n if b, = n,

and l, =1 if b, = n’. The lemma will still hold by induction.

So now, finally, assume that all the balls 1,...,7 are in some box but,
for each i € 7, ball 7 is neither in box ¢ nor in box #’. Thus, as in the
proof of Lemma 4.20, we may assume for some k, where 3 < k< n-+41,
that, for all 1 € k — 2, the ball 7 is in either box i+ 1 or box (i 4 1Y,
and the ball k — 1 is in either box 1 or box 1’. Now suppose the box list
(b1,...,b,) has a proper list (1. ..., l.). Suppose I; = 1. Thus b; =1, so
no other ball in the proper list : »n be from box 1 or box 1’. Hence we need
Ix—1 = k— 1. Continuing »a in tiis fashion, as in the proof of Lemma 4.20,
we get (l1,...,lk—1) is (1,...,5 —1). If I;£1, then we need I = 1.
Thus bz equals whichever of the two boxes, 2 or 2/, contains 1. In either
case, we cannot select any other ball from either of the two boxes for the
proper list, hence we need I3 = 2, and continuing on we have (l1yeeeyli—1)
is (k = 1,1,2,...,k = 2). Each of these cases determines the “beginning”
of the box list, i.e., (b1,ba,...,bxk—1). If the list in each case is the same,
then any box list which has at least one associated proper list must have
this “beginning.” The ending, as in Lemma 4.20, can be any proper list
(ly...ln) from the smaller embedded problem. By induction this is a fixed
power of two, say 27, and so the number of complete proper lists, for any box
list having proper lists, is 2P+! . If the two “beginnings” are different, then
any box list having proper lists must have one of these two “beginnings,” and

the number of proper lists it will have will be 27,

In all cases, all box lists with proper lists have the same number of proper
lists, and that number is a power of two. The induction is now completed.
O
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- only if the corresponding vector has it’s i*

Now, with this lemma, we can finish this section with the following

THEOREM 4.24 If M € GINR"*X™, there exists a nonegative integer

"p, such that for all ¢ € K(M)

|su§p gl=n = |sol(q, M)]=2".

Proof. With reference to Lemma 4.23, let ball ¢ correspond to I;, and ball 3
correspond to — M.; . We say a ball is in box ¢ if and only if the corresponding

h

vector has it’s i*® component positive. We say a ball is in box i’ if and

h component negative. Each -
full complementary cone must be, geometrically, an orthant in R™. Each
degenerate complementary cone must be, geometrically, contained in the
union of the boundaries of the orthants. There is a bijective correspondence
between orthants and box lists. Thus the interior of each orthant that is
contained in K(M) must be an element in L. Since there is a bijective
correspondence between full cones covering an orthant and proper lists of the
orthant’s associated box list, Lemma 4.23 implies that each orthant contained
in K(M), i.e., with some associated proper list, must be covered by the same
number of full cones as the other orthants in K(M), and that number must

be a power of two. Thus, by Theorem 3.8, |sol(g, M)| is this power of two

for any ¢ belonging to K(M) and the interior of an orthant.
a

113




L (perturbed)
|

~ — B{q,e)

[ — V
X S
/
/ \
/ \\ VS K(M)
\ \
/ \
\
Figure 4.1

Figure 4.2

114

|




Figure 4.3

ar'

Figure 4.4

115




Figure 4.5
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CHAPTER 5.
MATRIX CLASSES AND LCP THEORY

5.1 Matrix Classes

Much of the literature concerning the LCP deals with the study of matrix
classes. Some classes are defined using the LCP itself and so we seek more
constructive characterizations. Other classes are defined using more simple
and testable criteria and results are found concerning the nature of the LCP
(g, M) when M isin one of these classes. The relationships ameng the classes
has also been a rich subject of study, and much work has been devoted to
trying to understand which basic properties of importance to the LCP are
common, or different, among the matrix classes. In Figure 5.1 we have listed
the seven matrix classes defined in this work along with some of the more
well-studied matrix classes in the field. This figure should be referred to
throughout this section. (The arrows indicate inclusion relationships among
the classes, with the larger classes tending to be at the top of the page.)
The purpose of this section is to define the classes in this “family tree,” and
to discuss just where U and INS fit into it. There is no attempt to give a

detailed review of these classes, however references are given showing where
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more information can be obtained. Some basic references of general value
are Lemke (1970), Karamardian (1972), Kostreva (1976), Mohan (1978), and
Cottle (1983). The classes are presented in alphabetical order by the symbols
used in Figure 5.1. At times it will be necessary to refer to the definition of

a matrix class not yet given.

(A) A matrix M € R™*X" is said to be adequate, M € A, if and only
if M € Py and for all a € () we have det M,, = 0 implies the column
vectors M., are linearly dependent and the row vectors M,. are linearly

dependent. See Ingleton (1966), Cottle (1968) and Eaves (1971).

(BG) A matrix M € R™">™ is said to be a bimatriz game matrix,
M € BG, if and only if for some m € (n—1) there are matrices

A g RmX(n—m) and B € R("—m)Xm where A,B > 0 and

m=[0 %]

B 0

See Lemke and Howson (1964), Cottle and Dantzig (1968) and Eaves (1971).

(CP) A matrix M € R*X™ is said to be copositive, M € CP, if and
only if for all z € ®™, z > 0 implies z7 Mz > 0. This matrix class has also
been denoted as Cy. Copositive matrices are important in combinatorics and
other fields aside from complementarity. There is a large literature about this
class, for example, see Gaddum (1958), Cottle and Dantzig (1968), Cottle,
Habetler, and Lemke (1970b), Pereira (1972), Hoffman and Pereira (1973),
and Evers (1978).

(C+) A matrix M € R™**™ is said to be copositive-plus, M € C+, if
and only if M is copositive and for all z € R™, z > 0 and z7 Mz = 0 imply
(M + MT)z = 0. Like the copositive matrices, there is a large literaturc

concerned with these matrices. See the papers given as references for the
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copositive matrices.

(Ep) A matrix M € R™"*™ is said to be semi-monotone, M € Eo,
if and only if for all £ € R*, C3£z > 0 implies there is some k& € %
such that zx > 0 and (Mz)x > 0. (This class has also been denoted
as L;.}) If M is symmetric, then M is semi-monotone if and only if
M is copositive. We have used these matrices previously, with their other
characterization of being the class of matrices M for which [sol(g, M)| =1
for all 0 < ¢ € R™. Like the copositive matrices, the semi-monotone matrices

have been extensively studied. See, for example, Lemke (1970), Eaves (1971),

Pereira (1972), Karamardian (1972), and Garcia (1973).

(Ef) A matrix M € R"X" is said to be fully semi-monotone if and
only if all princibal transforms of M are semi-monotone. This matrix class
was introduced in this work, and was shc«a to contain the matrix classes
U and Pg. (It is clearly contained in Eg.) As seen, it can be characterized
as the class of matrices such that for all ¢ € ®"*, if (w,2) € sol{q, M) and
w+ 2z > 0 then {(w,2z)} = sol{qg, M). To see why Ef has been placedq

where it is in Figure 5.1, consider the matrices

Y N P Ry S R
(5.1) (5.2) (5.3) (5.4) (5.5)

None of these matrices are in Ea. However, (5.1) is in SCP, E, and
(NNQ)™, (5.2)isin Z, (5.3)isin NNQ, (5.4)isin N\ Q, and (5.5) is in
GNI. Consider now

0o 0 1 2
0 0 2 1
M= (5.6)
1 2 0 0
2 1 0 0
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M is in BG, but is not in Ef. This can be seen as we have

and the inverse of a matrix, if it exists, is always a principal transform.
However, with z = (1,0,1,0)7, we note that there is no index k € 4 for

which zx > 0 and (M~!z), > 0. Hence M ¢ Ef .

(E) A matrix M € R™**™ is said to be sirictly semi-monotone if and
only if for all z € ™, 0%z > 0 implies there is some k € 7@ such that
zx > 0 and (Mz)x > 0. (This class has also been denoted as L+.) If
M is symmectric, then M is strictly semi-monotone if and only if M is
strictly copositive. Similar to the semi-montone matrices, these matrices can
be characterized as being the class of matrices M for which |sol(qg, M)| =1
for all 0 < g € R™. See the papers given as references for the semi-monotone
matrices. This matrix class is also the class of completely Q-matrices, which
are defined to be those Q-matrices all of whose principal submatrices are also

Q-matrices. This equivalence was shown by Cottle (1979).

(GI) A matrix M € R™*™ is said to be in GI if and only if for all 1€ R
we have |supp M.;] < 1. This class was brought up in Chapter 4 due to its
combinatorial nature, and because it is “almost” in the class INS. For such
a simple class of matrices, it seems surprising that it is contained in none
of the other matrix classes in Figure 5.1. Still, Example 2.3 is a GI-matrix
that is not in Qg, and the 1 X 1 matrix (these are usually referred to as
“numbers”) [—1] is not in So. As mentioned in Chapter 4, GI £ INS. The

class GI is contained in no other matrix class in Figure 5.1, since every other
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matrix class shown there is a subclass of Qp, Sp, or INS.

- (GNI) A matrix M € R*X" is said to be in GNI if and only if M € GI
and M < 0. It was shown in Chapter 4 that vhis class is in INS. In fact,
M € INS,NGNI implies &k = 27 for some nonnegative integer p. Also
INS,» N GNI # @ for all nonnegative integers p, as the zero matrix is in INS;
and —J € RPXP i3 in INS2s.

(INS) A matrix M € R™X" js said to be in INS, for Invariant N umber
of Solutions, if and only if there is some positive integer k& such that for all
g € int K(M) we have [sol(gq, M)| = k. We have studied these matrices
a great deal. Notice now where they fit into Figure 5.1. We know from
Theorem 3.4 that INSNQ = P. Also, it is shown in Garcia (1973) that
M € L(d) with d > 0 implies |sol(d, M)| = 1, and hence we have

U L(d)NINS =U.
da>0
We see that Eg NINS = U, since for M € Eg we have [sol(q, M)| = 1 for
all ¢ > 0. More will be said about INS matrices in relation to some of the

other classes, but, before moving on, notice that the matrix given in (5.5) is
in INS but is not in Sg,s0 INS &Z S .

(K) A matrix M € R**" is said to be in K if and only if M € PNZ.
(These matrices have also been referred to as the Minkowski matrices aﬁd
denoted as the class M.) These matrices have a great deal of structure,
both geometric and algebraic. It is interesting to note K = ZNQ, i.e., the
complementary cones of a Z-matrix cover R™ if and only if they partition R™.
(The meaning of “partition” allows the cones to intersect on their boundaries.)
The classic reference for these matrices is Fiedler and Ptik (1962). See also

Cottle and Veinott (1972).
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(Ko) A matrix M € R™X" is said to be in Kq if and only if

M € Py NZ. Again, the classic reference here is Fiedler and Ptdk (1962).

In Mohan (1980), it is shown that the boundary of a Kq matrix is the union
of the degenerate faces. Since, for M € Ky , there are no reflecting faces in
K(M), as Kq C Py, it follows that K(M) is regular. In Chandrasekaran

(1970) it was shown that Z € Qg , hence K(M) is convex for a Kg-matrix,

and so int K(M) will be connected. Thus Ko C INS by Corollary 3.14.v

As Ko C Py C Ej, we see we must have Ko C U. In Mohan (1980),
other results are derived about Ky which can be viewed as consequences of
some of the theorems presented here concerning U-matrices. See also Mohan

- (1978) for more on Ky-matrices.

(L) A matrix M € R™*" is said to be in L if and only if M € E,,
and for all (w, z) € so0l(0, M), where z5#%0, thereisa z € ®*, 0#z >0,
with z > z and w > —M7Tz > 0. This is one of the largest classes of
matrices that Lemke’s algorithm using ¢ = (1,1,...,1) is known to process.
The standard reference for this class, which is also the reference defining the

class, is Eaves (1971).

(L(d)) A matrix M € R"X™ is said to be in L(d) if and only if for all
(w, 2) € sol(\d, M), where 2540 and X > 0, thereisa z € R", 04z > 0,
with z > z and w > —MT7Tz > 0. The standard reference for these classes

is Garcia (1973). It should be pointed out that L = ﬂd4>o L(d).

(L*(d)) A matrix M € R™X" is said to be in L*(d) if and only if
for all A > 0 we have that (w,z) € sol(Ad, M) implies (w,z) = (\d,0).
For d > 0, L*(d) is the class of all matrices M where in K(M) the only
complementary cones containing d are pos C(a) where aNsuppd = 9, and

there are no strongly degenerate cones in K(M). For d } 0, L*(d) is
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the class of all matrices M where K(M) has no strongly degenerate cones
and does not contain d. These classes, as well as the L(d), were introduced
in Garcia (1973). There it is shown if M € L(d), with d > 0, then for
all X\ > 0, we have {(\d,0)} = sol(\d, M). Hence, for d > 0, we have
L*(d) = L*(0)NL(d). While before we had L = Ny, L(d), we can only say
here that E C Ny o L"(d). For example, the matrix

.

is in Ng>oL°(d), but is not in E. We will have more to say about these

classes later on.

(N) A matrix M € R™*" is said to be in N if and only if all principal
minors are negative. Two standard references for this class are Saigal (1972a),
and Kojima and Saigal (1979). More will be said about this class in what

follows.

(NNQ) A matrix M € R*X" is in this class if and only if it is both
in N and in Q. It is shown in Kojima and Saigal (1979) that if M € N,
then M € Q if and only if M & 0. It is also shown if M € NNQ, then
[sol(g, M)| equals 1 for ¢ 3 0, and equals 2 for 0 & g > 0. According
to Theorem 3.3 of Kojima and Saigal (1979), if M € NNQ and ¢ > 0
then [sol(q, M)| equals 3 if all solutions to (g, M) are nondegenerate, and
equals 2 otherwise. (Actually, what it means for a solution of (g, M) to be
“nondegenerate” is never defined in that paper, however, it can be inferred
from context and the cited references that the intended definition is the
one given here in Chapter 1.) While it is true that there will be exactly
three solutions for all ¢ > 0 having only nondegenerate solutions, it is true

that there are exactly three solutions for all ¢ > 0. The last line of the
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proof, given in Kojima and Saigal (1979), says a solution is “lost” because of
degeneracy. This will be the case when 0 € g > 0 and it is on a reflecting
faée; however, for ¢ > 0 we are only contending with proper faces, and no

solutions are “lost.” Consider

ExAMPLE 5.1 Let

—1 4 1
M = 1 -1 —4
2 -1 -1

It can be easily checked that M € N and, as M 4 0, M € Q. Let
g =1(2,4,1)T. Then (g, M) has three solutions

(w', z') =(2,4,1,0,0,0)
(w?,2%) =(0,6,5,2,0,0)
(w3, 23) = (3,0,0,0,0,1)

and (w3, 2%) is degenerate,

(N\ Q) A matrix M € R**" is in this class if and only if M is in
N but not in Q. In Kojima and Saigal (1979) it is shown that this is the set
of matrices M € N for which M < 0, hence, as pointed out in the paper,
we will have K(M) = R7_ . Therefore these matrices are in Qo, hence all
of Nis in Q¢. Kojima and Saigal (1979) also shows, for all ¢ > 0, i.e, all
q € int K(M), we have |sol(g, M)| = 2. This means

N\ Q C INS;.

(NNQ)™!) A matrix M € R™*" is in this class if its inverse is

in NN Q. This is equivalent to saying the matrix is in Q, its determinant
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is negative, and all of its proper principal submatrices are in P. Thus all
proper principal submatrices are in Q, along with the matrix itself. Hence
these matrices are completely-Q, which is to say they are in E. For more on
these matrices see Saigal (1972b). The following example helps to justify the

placement of these matrices in Figure 5.1. Let’

3 —8 0
M=|-1 3 4
0 1 2

Notice M—! € NN Q. However, M g CP as letting =z = (3,2,0)7 we have
zTMz < 0.

(P) A matrix M € R**" is in the class P if and only if all principal
minors of M are positive. This is one of the most studied classes of matrices
related to the LCP. There are many equivalent characterizations of these
matrices, for example: M € P if and only if for all ¢ € R™ we have
|sol(g, M)| = 1, see Samelson, Thrall and Wesles (1958), and Murty (1972);
M € P if and only if, for z € R", we have z;(Mz); < O forall 1 € 7
implies z = 0, see Fiedler and Ptk (1962), also Gale and Nikaido (1965);
and M € P if and only if, for A € R**™, we have det(] — A + AM)#0
for all 0 < A < I, see Aganagic (1978). The middle characterization gives
some intuition behind the definition of E, as it states a matrix belongs to P if
and only if for every non-zero z € R", (not just z € R7 ), we have an index
k € @ for which zx(Mz)x > 0. An interesting characterization by Habetler
and Kostreva (1980) is as follows. Say a point z € R™ is a complementary
point of (g, M) if and only if there is a z € R™, where for all 1+ € 7T we
have (Mz 4 g¢)i 2; = 0, such that z = 2 4 (Mz + g). It is then the case
that M € P if and only if there is some ¢ € R™ such that the interior of

each orthant in R™ contains exactly one complementary point of (g, M).
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For more on P-matrices, see the references mentioned and also Fiedler and

Ptak (1966).

(Po) A matrix M € R**™ isin Py if and only i all principal minors
of M are nonnegative. Like P, this class has been extensively studied. In
fact, the question of exactly what structure and properties are lost when
dealing with Pgo as opposed to dealing with P was one of the questions
leading to the present work, and to other works in the field. Again, major
references to this class are the papers by Fiedler and Ptik (1962, 1966). An
interesting characterization of Pg, giving insight into the definition of Eg,
comes from Fiedler and Ptik (1966) and states M € Pg if and only if for all
0%z € R", (not just z € N7 ), we have an index k € 7 for which z, 70
and zx(Mz)x > 0. We move on to a special class of Pg-matrices which were

defined earlier in this work.

(P1) Amatrix M € R**" isin P, if and only if M € Py and exactly
one principal minor of M is zcro. This class fits into Fiigure 5.1 in about the

same position as Py. However, we do know
Tueorem 5.2 Py CL.
Before starting the proof, we introduce a lemma.

LEMMA 5.3 If M € Eog NR™>™ and for some 7 € 7t we have M,; > 0
with M;; =0,then M € Q.

Proof. Suppose we have a matrix M satisfying the hypothesis of the lemma.
Take some ¢ € posC(@).;. By reasoning similar to previous dimensional
arguments, we may assume ¢ lies in no k-dimensional faces of K(M), for
k < n—1, and any (n — 1)-dimensional face of K(M) that contains ¢ is

contained in the hyperplane
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H =spanC(0)s={z€R":z;, =0}.

Let Ht+ be the closed half-space with H as boundary that contains I;,
and let H— be the other closed half-space. Let posC(a).; be a (n — 1)-
dimensional face of K(M) that contains. M.; and is contained in H. We see
posC(a).; cannot contain I; ¢ H. Also, the vectors of C(a).; are linearly
independent, as posC{a).; is (n — 1)-dimensional, hence the face cannot
contain —M.;. Thus 7 = i. As M, € posC(®).;, and as the (n — 1)-
dimensional faces of K(M) are finite in number and closed, we can select
g close enough to M.; such that we have the additional property that any
(n — 1)-dimensional face, pos C(a).;, of K(M) that contains ¢ must have
j = 1. Now for all ¢ > 0 small enough, B(q,e)N K(M) = B(q,¢)NnH, and
no face of K(M) whose dimension is smaller than n — 1 intersects B(q,¢).

Thus B(g, e)Npos C(9).: = B(g, €) N H . Hence
¢ £ B(q,¢)Nintpos C(P) C HT.

Since M € Ep , no other full cone can intersect the interior of pos C(#). Thus
any full cone, pos C(a), containing B(g, €)Nint H~ must have a boundary
face in H. This face will then contain ¢, and so this face is pos C(a)..
As both I; and —M,; are in H1, then we have posC(a) C Ht, giv-
ing us a contradiction. Hence no full cone, and hence no cone, contains

B(q,e)NH— #0. Thus M ¢ Q.
a

Proof of Theorem 5.2. Let M € PyNR**X". We know M € Ey as
P, C Py C Ef C Eg. If s0l(0, M) = {(0,0)} then M € L. Thus assume
there is a non-trivial solution, say (w, z) with 2540, to (0, M). Thus, letting

y = w + z, we have for some a € (7) that yo = 2., ya = wa, and
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C(a)y = 0. Thus we know M,, y, = 0. In addition, we must have y, > 0

for otherwise some principal submatrix of My, , and hence of M , is singular,

‘but My, is the only singular principal submatrix of M. In the same way,

we know y5 > 0. Else, for some ¢ € &, we have M{;}4 9o = 0. Thus, with
B = aU{i}, we have Mpgzg = 0 which, again, contradicts the fact that
Mo is the only singular principal submatrix. Thus y > 0.

We now show M ¢ Q. If |a| =1, then it must be that, for some 1 € 7
where a = {1}, we have M,; > 0 and M,; = 0. Thus, by Lemma 5.3,

M ¢ Q. Suppose |a] > 1. Pick some 8 C o with |8| = Ja] — 1, and

let M be the principal transform of M gotten by block pivoting on Mpg .
(Again, we know Mpg is nonsingular as Mg, is the only singular principal
submatrix.) Since we have My ya = 0 and Msq Yo > 0, then, letting
{i} = a\ B, we have My; > 0 and My; = 0. Since M € E§, we have
M € Eg, thus Lemma 5.3 gives us M € Q. Hence, as claimed, M ¢ Q.

From Theorem 2.25, M € U and K(M) is a half-space. Let 054 z € R™
be a normal to the hyperplane dK(M). As M € U, so K(M) is regular,
we must have posC(a) C 9K(M) thus C(a)Tz = 0. Since all other
complementary cones are full, they cannot be contained in dK(M). Thus
C(a)Tz > 0. Therefore T, > 0 and z54 = 0. Also, zT M. = 0
and zTM.s; < 0. Hence, we can choose z so that [|z|| is so small that
z2>2>0,and w > —MTz > 0. This means M satisfies the conditions

to be in L, and the theorem follows. O

It should be noted that Py & CP, for consider the matrix

0 —4
1 2
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Clearly, M € P;. Yet, with z = (1,1)7, we’'ve 2T Mz < 0.

(P1\ Q) A matrix M € R™X™ is in this “class” if and only if it is in
P;, but not in Q. This class has the same position in Figure 5.1 as does P,
except it is also contained in U. More was said about P, \ Q at the end of

Chapter 2.

(PD) A matrix M € R*X™ is said to be positive definite, M € PD, if
and only if for all 054 z € R™ we have zT Mz > 0. For symmetric matrices,
being in P is equivalent to being in PD, which is equivalent to there being
some L € R™X™ such that L is nonsingular and M = LTL. For more
concerning positive definite matrices, see Gantmacher (1960), Dantzig and

Cottle (1967), Cottle, Habetler and Lemke (1970a), and Cottle (1983).

(PSD) A matrix M € R™X™ is said to be positive semi-definite,

M € PSD, if and only if for all z € R™ we have 27 Mz > 0. For symmetric |

matrices, being in Py is equivalent to being in PSD, which is equivalent
to there being some L € R™X™ such that M = LTL. The class PSD is
usually thought of in connection with convexity as the quadratic function
F(z) : ®* — R defined by F(z) = zTMz 4+ Tz + d, with M € R"*",
c € R™ and d € R, is convex if and only if M € PSD. See the references

given for positive definite matrices.

(Q) A matrix M € R™X™ js said to be in Q if and only if for all
g € R™ the LCP (g, M) has at least one solution. This is equivalent to saying
K(M) = R". One of the major, and perhaps most difficult, problems in
linear complementarity theory is to find a “good” characterization of Q, i.e.,
a characterization with which one could quickly test a matrix to determine
whether or not it is in Q. Many of these other matrix classes were studied in

attempts to find more classes of matrices that were contained in Q, or Q.
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Two interesting works concerning Q are Watson (1974), Kelly and Watson
(1979). The latter contains a counterexample to a result of the former. In
essence, it shows the annoying result that the set of Q-matrices is neither
open nor closed in R™*X™ for n > 4. Hence, the class Q will be nard to

characterize. See also Cottle, von Randow and Stone (1981).

(Qo) A matrix M € R™*™ is said to be in Qp if and only if for all

g € R™ where the system of inequalities
Mz+4+4¢20 z>20

is feasible, there exists at least one solution to the LCP (g, M). This is
equivalent to saying K(M) is convex. Like Q, characterizing Qg in a “good”
way is a long standing problem. In fact, with a characterization of thisi class
we can just say Q = Qo NS. Again, many of the works mentioned are
concerned with Q. For a recent and interesting paper on this class see
Doverspike and Lemke (1981). (In other works, this class is denoted K; it
should not be confused with the K used here.)

(R) A matrix M € R™X™ is said to be regular, M € R, if and only
if, with e = (1,1,...,1)T € R™, we have, for all X\ > 0, that {(X\e,0)} =
sol(Ae, M). Clearly, R = L"(e¢). The standard reference for this class is
Karamardian (1972). It is of interest to note, as shown by Agaragic and
Cottle (1978), that Po NQ = Pg NR. We cannot do better than this in

classifying Pg N Q as far as Figure 5.1 is concerned. For example, the matrix

[ ]
—1 1
is in Q and in Pp but is not in E which is the next matrix class “lower” in

Figure 5.1 than R.
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(S) A matrix M € R"*™ is said to be in S if and only if there exists
an z € 8?". such that z > 0 and Mz > 9. This is the class of matrices
for which (g, M) is “feasible” for all ¢ € R™, i.e., for all ¢ € R™ there is an
z, € R™ with z, > 0 and Mz4 -+ ¢ > 0, see Lemke (1970). The classic
reference for these matrices is Fiedler and Ptak (1966). Other relevant works

to look at, that use S-matrices are Saigal (1971a) and Cottle (1979).

(So) A matrix M € R"X" js said to be in Sg if and only if there
exists an z € R™ such that 02z > 0 and Mz > 0. This is clearly
one of the largest matrix classes listed here, containing many of the others.

Again, Fiedler and Pték (1966), Lemke (1970), and Saigal (1971a) are good
' references for this class. For a nice rcference which extends the properties
embodied in the matrix classes P, Po; S, and Sg to non-linear functions, see

Moré and Rheinboldt (1973).

Two of the inclusion arrows leading to the class Sy in Figure 5.1 are
not trivial, and have not been found by the author in the literature. The

Jjustification for these inclusions is in the following two theorems.
THEOREM 5.4 Uy oL(d) € Sp .

Proof. Suppose for some 0 < d € R™ we have M € L(d)NR"*", but
Mg Sy . If (w,z) € sol(0, M), then Mz >0 and z > 0. Thus M ¢ S
implies z = 0. Hence {(0,0)} = sol(0, M). Garcia (1973) shows that
M € L(d) implies for all X > 0 that we have {(\d,0)} = sol(\d, M).
We conclude M € L*(d). But L*(d) C Q C S C Sy, which gives us a

contradiction. Thus M € Sg and the theorem holds. -

THEOREM 55 Eg C Sp.
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Proof. Suppose M € Epg NR™**". Let I € R"X"™ be the identity matrix.
Thus, for all € > 0, we have almost directly from the definitions that
M+ el € E. Now EC Q C S C Sg, so for each € > 0 there is a
0% z. > 0 such that (M + el)zc > 0. We may assume, by scaling, that
llzell = 1. As the set

{zeR™:|jz|| =1}, the unit sphere in R™,

is compact, we have some point zo € R™, with ||zg|]| = 1, that is a cluster
point of the set of z.. Thus, letting ¢ — 0, we see that zg > 0, and that

Mzy > 0. Thus M € Sg, and the theorem holds. -

(SCP) A matrix M € R™*"™ is said to be strictly copositive, M € SCP,
if and only if zT Mz > 0 for all z € R™ such that 074 z > 0. This class has
also been denoted as C. For symmetric matrices, being in SCP is equivalent

to being in E. See the references given for copositive matrices.

(U) A matrix M € R™®X" is said to be in U, for Unique solution, if
and only if for all ¢ € int K(M) we have [sol(q, M)| = 1. This matrix
class was the topic of Chapter 2. If M € Egp, then for all ¢ > 0 we have
|sol(gq, M)| = 1. Garcia (1973) shows that if M € L(d), for some d > 0,
then [sol(d, M)| = 1. Hence we see,

Eo NINS = U { U L(d)}nINS cu. (5.7)
d>0

Thus, as UNQ = P, we have

{dgo L'(d)} NINS =P. (5.8)
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This helps us understand how U fits into Figure 5.1. Now consider the

following matrices

17

[(1) (1)] [ i 1 J '
(5.9) (5.10)

Notice (5.9) is contained in U, but not in Qg . (This is Example 2.3.) Hence,
the right side of (5.7) is a proper inclusion. As for (5.10), it is not in U, yet
itisin ANPSDNSCPNENP;. Also, (5.6) showed an example of a matrix

that was in BG but not in E}, hence certainly not in U.

(Z) A matrix M € R™X" is said to be in Z if and only if for all ¢,7 € 7,
where 77 j, we have M;; < 0. These matrices have been well studied. See,
for example, Saigal (1971b) and the references mentioned in the paragraphs

concerning the classes K and Kg. In particular, see Mohan (1978).

(Z) A matrix M € R*X™ is said to be in Z il and only if M € Z
and, for all © € @, we have M;; > 0. (This class has also been denoted by
L.) Sec th~ references for Z-matrices and, in particular, see Saigal (1972b)
and Mohan (1978). One thing that should be pointed out is an error in
Theorem 5.4 of Saigal (1972b). The theorem states that M € Z implies
K(M) is regular. (Saigal’s definition of regularity and the definition used
in this work are different, however, all that need be known here is that the
two definitions coincide for nondegenerate matrices.) This is not the case.

Consider




This matrix is nondegenerate and contained in Z. Let ¢ = (51, 11,19, 39)T

and § = (49,9,21,41)T. Then (g, M) and (§, M) both only have non-

“degenerate solutions, but |sol(g, M)] = 4 and |sol(g, M)| = 2. Specifically,

the solutions, (w,z), of (¢, M) are

(51,11,19, 39,0, 0,0, 0) (4,0,0,0,0,8%,10%,9%)
(0,0,6+%,0,35,184%,0, 2§) (0,0,0,0,1%,13§,5§,64F) ,

while the solutions of (g, M) are

(49,9,21,41,0,0,0,0) (0,0,114%,24%,355,174%,0,0) .

This implies M ¢ INS and, as M . is nondegenerate, that K(M) is not
regular by either definition. This incorrect result is referred to by Mohan
(1978) in several places. Saigal (1972b) uses it to “show” that if M € Z then
M € INS,, which is clearly not true as seen in the example just given. More

will be said about this in the next section.

5.2 Related LCP Theory

In this section we will consider some results in the LCP literature that
seem related to the material we have covered. Most of the results concerning

the exact number of solutions to the LCP have already been mentioned.

There is the classic result of Samelson, Thrall and Wesler (1958) that P
is the set of all matrices M such that for all ¢ we have |sol(q, M)| = 1.

In Eaves (1971), it is shown if M € Po and g is contained in the

interior of some full complementary cone then |sol(¢g, M)| = 1. This can
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be seen to follow from the fact that P C E§. For it is easily shown
that E{, can be characterized as the set of those matrices M such that,
for all ¢, if ¢ is contained in the iuterior of a full complemehtary cone then
|sol{g, M)| = 1. Related to this is Theorem 2.2 in Saigal (1970a) which states
that M € Py implies that if sol(g, M) contains a nondegenerate solution
then |sol(g, M)] = 1. This can be seen to be in error by considering the
matrix [0] = M € Py NR1*X1. We have for A > 0 that (w,z) = (0,))
is a nondegenerate solution to (0, M). It should also be mentioned that
this result generalized a previous result of Lemke (1965) which used positive

semi-definite matrices, a smaller subclass of Pg.

There are several theorems by Murty (1972) on this subject, including
another proof of the Samelson, Thrall and Wesler result. The main theorems
from Murty (1972) of interest here are: |sol(g, M)| < oo for all ¢ if and only
if M is nondegenerate; if |sol(q, M)| is constant over all non-zero ¢, then |
that constant is one and M € P; if [sol(q, M)| is constant for all ¢ which

are nondegenerate with respect to M, then that constant is one.

The class N is studied in Kojima and Saigal (1979). It is shown that for
M € N,if M £ 0 then the value of |sol(g, M)| is one for ¢ P 0, is two
for 0 & ¢ > 0, and is three fdr q > 0 nondegenerate with respect to M.
This last part, as noted earlier, should state |sol(q, M)| = 3 for all ¢ > 0.
(Kojima and Saigal (1979) incorrectly state the value is two for ¢ > 0 but
degenerate with respect to M .) It is also shown for M € N, if M < 0 then
the value of |sol(q, M)| is zero for ¢ } 0,is one for 0 € ¢ > 0, and is two
for ¢ > 0.

In Mohan (1980), it is shown for M € Ko, ¢ € int K(M) implies
|sol(g, M)| = 1 and q € AK(M) implies |sol(g, M)| = oo.
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In Saigal (1972b), the concept of a “regular pseudomanifold” was dis-
cussed with reference to K(M). K(M) was defined there as being “regular”
if and only if every face was either proper or contained in dK(M) . However,
the definition of “proper” giveﬁ there is different from what is used here.
A face was defined there aé being proper if and only if it is the intersec-
tion of the two adjacent complementary cones containing it. (It is clearly
tn the intersection. The requirement here is that the intersection contain
nothing else.) “Proper” in our sense implies “proper” in Saigal’s, but not
conversely. For instance, if a full cone is adjacent to a degenerate cone the
common face would be.considered “proper” by Saigal’s definition but not by
ours. Hence, our definition of K(M) being regular is strictly stronger. We
will use the italic proper and regular to refer to Saigal’s (1972b) definition,
and standard lettering for our own definitions. Notice the definitions are
equivalent for nondegenerate matrices. As pointed out before, Saigal (1972b)
incorrectly “proves” that M € Z implies K(M) is regular. An example of
a Z-matrix where K(M) is neither regular or regular was given in the last
section. However, the paper also contained the “theorem” that if K(M)
is reqular, M ¢ P, M is nondegenerate and sol(q, M) contains only non-
degenerate solutions, then |sol(q, M)] = 2. This is also incorrect. For ex-
ample, letting M be the negative of the identity matrix in ®2%2 we have
M is nondegenerate, K(M) is regular and hence is regular, M ¢ P and yet
g € int K(M) implies [sol(g, M)] = 4. A possible substitute here could be
gotten from Corollary 4.6 which would state that if M is nondegenerate,
M ¢ P, K(M) is regular (so M € INS by Corollary 3.18), then if sol(q, M)
contains only nondegenerate solutions, then |sol(g, M)| is even. These two
errors in Saigal (1972b) cause some results of Mohan (1978), which depend on
them, to be incorrect. These results are Theorems 1.3.8, 1.5.8, 1.5.12, 3.3.3,
3.3.4, and Corollary 3.3.1 of Mohan (1978).
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Aside from questions concerning the exact number of solutions, another
concept that has been studied is the constant parity property. We say a
matrix M has the constant parity property if and only if the parity of
[sol(g, M)|, i.e., whether it is even or odd, is the same over all ¢ where
sol(g, M) contains no degenerate solutions. (Thus if M ¢ Q and has the
constant parity property then the parity is even. Given any ¢ & K(M) we
have sol(q, M) = @ contains no degenerate solutions and has even parity.)
The concept of constant parity is a weaker form of the concept of a con-
stant number of solutions. Clearly all INS-matrices have the constant parity

property.

The classic theorem on constant parity was shown by Murty (1972). It
states that a nondegenerate matrix has the constant parity property. Also
in this paper is the theorem that a nonnegative Q-matrix has the constant

parity property with the parity being odd.

In Saigal (1970b) we find the following theorem on the constant parity
property: If —MT € S, then M has the constant parity property with the
parity being even. The final word on the subject was in essence given by Saigal
(1972a). It states that a matrix, M € R™>" has the constant parity property
if and only if it is true that for any collection posC(a,),posC(az),...,

pos C(ay) of strongly degenerate complementary cones, where & is odd and

dim([pos C(a;)N---NposClax)] =n—1,

there exists for each ¢ in this intersection another strongly dcgenerate com-
plementary cone, posC(ak41), such that ¢ € posC(ak41). This result

expresses the basic geometric structurc behind the constant parity property.
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Mohan (1978) proves the following related theorem concerning Z-matri-
ces: If M € ZNR*X™ and there is a £ € R™ such that MTz > 0, then M
has the constant parity property and the parity is odd if and only if M € K.

The last area of complementarity theory we will bring up is Lemke’s
algorithm. An algorithm for solving the LCP was suggested by Lemke and
Howson (1964), and Lemke (1965). It has since become a major tool in
the field, inspiring much research into other algorithms based on the same
principles and causing many studies to determine conditions for which the
algorithm is guaranteed to “process” a given LCP. For a detailed description
of Lemke’s algorithm see the two papers mentioned or see Eaves (1971) or
Cottle (1983). The essential concept is as follows. Given the LCP (g, M), we
take some vector 0 < d € R" and consider the family of LCPs (¢ +0d, M),
where the parameter § is taken as a nonnegative number. (In the canonical
statement of the algorithm, d is taken to be (1,1,...,1)T.) For all & large
enough we will have ¢+ 8d > 0 and hence (g + 8d,0) € sol(g + 64, M). In
other words, the “tail” of tthe ray

{g+0d|o >0} (5.11)

is contained in the positive quadrant. We then move back along the ray (5.11)
attempting to get to g. When we reach the face of a complementary cone we
continue in the adjacent cone. Thus a proper face allows us to travel in the
same direction along the ray (5.11) as we had been traveling, while a reflecting
face causes us to change direction. The problems associated with reaching a
degenerate face, or with reaching a nondegencrate face on its boundary, can
be taken care of by lexicographical methods. Again, see Eaves (1971). The
actual algorithm is carried out by a pivoting scheme which gives us a solution

to the LCP (q + 0d, M) when we are at the point q + 0d of the ray (5.11).
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(This solution is associated with the complementary cone through which we
are currently. traveling.) The hope is we eventually reach the end-point of the
ray (5.11) and thus find a solution to the original LCP (g, M). The other
two possiblities are that we go off on the infinite end of the ray (5.11) never
to return, or we reach a degenerate face with no other full cone to travel
through than the one by which we arrived. It is now clear for M € INS
where K(M) is star-shaped at d > 0 that we will find:

1) Lemke’s method using d will process (g, M) for all g € R™.

"~ 2) If a solution is found, then & will have been monotonically decreasing.
That is, after the- first pivot to initialize the algorithm, each pivot will
cause 0 to be strictly smaller. (Actually, to prevent degeneracy, we use
'lexicographiéal techniques. In this case the vector used in placq of 0 is

lexicographically decreasing.)

3) If when running the algorithm we find that § increases, or that we reach

a degenerate face, we may conclude (g, M) has no solution.

While it is necessary K(M) be star-shaped at d > 0 for these conditions
to hold, it is not necessary that M belong to INS. For the matrix (5.10),
K(M) is star-shaped at d = (1,1)7, and the above three conditions hold.
However, (5.10) is not in INS.

These observations, stated with a different emphasis, are basically seen
in Theorem 4.1 of Saigal (1972b). This theorem states that if K(M) is
regular and contains no strongly degenerate cones, then a necessary and
sufficient condition for Lemke’s algorithm to solve (¢, M) using d > 0 for
all ¢ € K(M) is that K(M) be star-shaped at d. In addition, the theorem

states that # will be monotonically nonincreasing. As pointed out above,

we may replace “regular” in this thcorem by “regular.” In this case, the
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condition that K(M) contain no strongly degcnerate cones can be dropped.

It is interesting to note that the theorem is false in one direction. While the

star-shapedness is certainly necessary, it is not sufficient. Let

0 —1 0
M=] —1 0 1
0 0o —1

We find K(M) = pos —M . Also, K(M) contains no strongly degenerate

cones. Notice that all faces of all complementary cones are contained in

| dK(M) , except for pos C(@).5 and pos C({2}).;. However, the complemen-

tary cones adjacent on pos C(f).; are the full cone pos C(9) and the degen-
erate cone pos C({2}). Thus pos C(#) 5 is proper, but not proper. Similarly,
the cones adjacent on pos C({2}).; are the degenerate cone pos C({2}) and
the full cone pos C({1,2}). Thus K(M) is regular, but not regular. It is cer-
tainly star-shaped at d = (1,1,1)T. Yet, while ¢ = (1,—1,2) is contained
in K(M), in fact we have (0,0,0,1,1,2) € sol(gq, M), Lemke’s algorithm

finds no solution to (g, M) using any d > 0. Thus the sufficiency part of

Theorem 4.1 in Saigal (1972b) is in error.

One more point before finishing this chapter is that Saigal (1972b) defines
K(M) to be the union of all complementary cones of dimension n — 1 or
greaier, where M € R™X™_, While this is often the case, it is not always

true. For example, let

0 0 1 0
0 0 0 1
M=
0 0 0 O
0 0 0 O
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Now ¢ = (—1,—1,0,0)T € K(M). Yet, if ¢ € posC(a) then {3,4} C a
and hence dim[posC(a)] < 3. The inclusion relationships of the matrix

classes discussed in this chapter are diagrammed in the folloWing figure.
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CHAPTER 6.
CONCLUSION

The central emphasis of this work has been on the underlying geometric
stucture of LCP’s with the global property of an irvariant number of solu-
tions. There are other interesting open questions related to this, and to LCP
theory in general. It seems appropriate to mention some of these questiohs

as a conclusion to this study.

Theorem 2.22 shows that Qo NU C Py . In essence, if we think of
starting in the positive orthant, which is a positive complementary cone, and
“moving” in K(M) through a sequence of adjacent complementary cones
then, if M € Qp NU, every common face we encounter between two com-
plementary cones is proper, until we reach a degenerate face which must be
on the boundary. Since “reflecting” isn’t allowed, as those type of faces are
forbidden by the fact that M € U, and since int K(M) is path connected so
we can reach all the complementary cones, then we can never reach a negative
cone. (There isn’t enough “room,” and there are too many restrictions, to
allow us to “turn around.”) It seems that there isn’t enough “room” even
allowing degenerate faces within int K(M). Thus a problem left open by
this study is to determine whether or not Qg N E{, C Py.

Look once again at the map, F', used in the proof of Theorem 3.15.
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If, as before, we assume that no complementary conc of K(M) is strongly
degenerate, then we can associate with F°, and hence with M, a special
integer referred to as the degree of F* (of M ). Let g € R™ be any vector
that is nondegenerate with respect to M. Then the degree of F' (of M) is
the number of positive complementary cones containing q minus the number
of negative complementary cones containing g. (It can be shown that this
number will be invariant over all ¢ nondegenerate with respect to M . For
more on the concept of degree see Ortega and Rheinboldt (1970).) The degree
of a map is a measure of the number of points in the domain which are mapped
to each point in the range. For a general map of degree k, however, it is
not necessary that any point in the range have exactly |k| points mapping
into it from the domain. However, the map F' associated with an LCP is
not a general map. Perhaps it is the case for these special maps, that when
the degree of F’ is k, one can always find a point in the range which has
exactly |k| points of the domain mapping into it. In the case k = 0, this
would mean that every matrix M with zero degree is not in Q, i.e., some
point, g, in the range, R™, of F' has no point in the domain mapping into
it. (Note that ¢ would then trivially be nondegenerate with respect to M .)
This is not the case. Kelly and Watson (1979) show that the nondegenerate

matrix
21 25 —27 —36

7 3 —9 36
12 12 —20 0
4 4 —4 —8

is in Q, yet it is a straightforward calculation to verify that the degree of
M is zero. For the case k£0 the question is still open, and there are
reasons to believe that the geometric structure of non-zero degree matrices is

significantly different from the geometric structure of zero degree matrices.
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Hence we have the deep question in LCP theory of determining whether or
not there exists a matrix M with no strongly degenerate complementary
cones, and with degree k3£ 0, such that [sol(g, M)| > |k| whenever q is
nondegenerate with respect to M. Another way of phrasing this is to ask
if, for matrices M with no strongly degenerate complementary cones, it is
true that when the union of the positive complementary cones is R™ and
the union of the negative complementary cones is R™, then every vector
¢, nondegenerate with respect to M, is contained in the same number of
positive complementary cones as negative complementary cones. Indeed, this
is conjectured to be true in Garcia and Gould (1980). See also Howe (1980).
(It should be pointed out that the class “Qo” in Garcia and Gould (1980) is

not the same as the one discussed in the present work.)

it the end of Chapter 3 we showed that, for nondegenerate matrices M,
K(M) is regular if and only if M € INS. It seems that the nondcgeneracy
assumption should be unnecessary; this raises the question of whether it is in

general true that K(M) is regular if and only if M € INS.

In Chapters 3 and 4 we developed the idea of the partition X of
R™\ K(M) . We noted that the elements of I are not in gen.ral convex, not
even when considering only those elements contained in K(M). The question
then arises as to whether the elements of ¥ are, in general, star-shaped. This
question is open, as is the related question of whether there will always be an
element of £ which is convex. (Is Theorem 4.4 valid for degenerate matrices

as well as nondegenerate matrices?)

In Chapter 4 we already have discussed Conjecture 4.8, but have not
spoken‘ about Assumption 4.17. This is a technical assumption that has

been used in another form by other authors. The last open question we’ll
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consider is the one surrounding this assumption on the geometry of LCP’s.
It can be stated as follows. Given an LCP consider the related map F' as
defined in the proof of Theorem 3.15. Suppose we let D be the union of
some collection of orthants in R™ such that D forms a pseudomanifold,
i.e., between any two orthants in D there is a path, in D, of “neighboring”
orthants. The image under F of each orthant is a complementary cone.
If the complementary cones which are the images of the orthants in D are
all positive complementary cones is it then the case that the restricted map
F : D — R™ is injective? If D = R™ the answer is “yes” as shown in
Murty (1972). If D is. convex we can reduce the problem to the case where
D is R™ for some m < n and the answer is again “yes” by the result in
Murty (1972). In general the question is open. It should be noted that the
LCP structure is important. If we were to require the function F on D to
just be piecewise-linear, with the pieces of linearity being the orthants, and
the determinants of the matrices defining the affine functions on adjacent
orthants to be of opposite signs, then F : D — R™ would not necessarily be
injective. As an example, consider D = R3, and F defined as follows on

the different orthants

( (z1,22,23) if £1,22,23 >0

(z1,21 + z2, 71 + 23) if 2 <0,z20 >0,2z3 >0
F(z1,22,23) = { (31 + 22,72, 72 +z3)  if 33 >0,z < 0,23 >0
(£1 + 23,22 + z3,2z3)  if 23 > 0,22 > 0,23 <0

A F(—z) otherwise

Then F is not injective even though it satisfies all the other restrictions

mentioned.
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